Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(F=a^2\left(a+1\right)-b^2\left(b-1\right)+ab-3ab\left(1-1\right)\)(vì a-b=1)
\(F=a^2\left(a+1\right)-b^2\left(b-1\right)+ab\)
\(F=a^3+a^2-b^3+b^2+ab\)
\(F=\left(a^3-b^3\right)+a^2+b^2+ab\)
\(F=\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a^2+ab+b^2\right)\)
\(F=\left(a^2+ab+b^2\right)+\left(a^2+ab+b^2\right)\)(vì a-b=1)
\(F=2\left(a^2+ab+b^2\right)\)
\(F=2\left(a^2-2ab+b^2+3ab\right)\)
\(F=2\left(\left(a-b\right)^2+3ab\right)\)
\(F=2\left(1+3ab\right)\)
\(F=2+6ab\)
ta có x+y+z=0
=> \(\left(x+y+z\right)^2=0\)
\(< =>x^2+y^2+z^2+2xy+2xz+2yx=0\)
\(< =>x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
\(< =>x^2+y^2+z^2+2.0=0\)(vì xy+xz+yz=0)
\(< =>x^2+y^2+z^2=0\)
\(< =>\hept{\begin{cases}x^2=0\\y^2=0\\z^2=0\end{cases}< =>x=y=z=0}\)
thay x=y=z=0 vào
\(K=\left(x-1\right)^{2014}+y^{2015}+\left(z+1\right)^{2016}\)
\(K=\left(0-1\right)^{2014}+0^{2015}+\left(0+1\right)^{2016}\)
\(K=1+0+1=2\)
\(\)
1)\(A=\frac{b\left(2a\left(a+5b\right)+\left(a+5b\right)\right)}{a-3b}.\frac{a\left(a-3b\right)}{ab\left(a+5b\right)}=\frac{b\left(a+5b\right)\left(2a+1\right).a\left(a-3b\right)}{\left(a-3b\right).ab\left(a+5b\right)}\)
\(A=2a+1\)=>lẻ với mọi a thuộc z=> dpcm
2) từ: x+y+z=1=> xy+z=xy+1-x-y=x(y-1)-(y-1)=(y-1)(x-1)
tường tự: ta có tử của Q=(x-1)^2.(y-1)^2.(z-1)^2=[(x-1)(y-1)(z-1)]^2=[-(z+y).-(x+y).-(x+y)]^2=Mẫu=> Q=1
3) kiểm tra lại xem đề đã chuẩn chưa
Bài 1 :
a ) \(2x\left(x+1\right)+2\left(x+1\right)=\left(x+1\right)\left(2x+2\right)=2\left(x+1\right)^2\)
b ) \(y^2\left(x^2+y\right)-zx^2-zy=y^2\left(x^2+y\right)-z\left(x^2+y\right)=\left(x^2+y\right)\left(y^2-z\right)\)
c ) \(4x\left(x-2y\right)+8y\left(2y-x\right)=4x\left(x-2y\right)-8y\left(x-2y\right)=4\left(x-2y\right)^2\)
d ) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)=\left(x+1\right)\left(3x^2+3x-5x^2+7\right)=\left(x+1\right)\left(3x-2x^2+7\right)\)
e ) \(x^2-6xy+9y^2=\left(x-3x\right)^2\)
Bài 1 :
f ) \(x^3+6x^2y+12xy^2+8y^3=\left(x+2y\right)^3\)
g ) \(x^3-64=\left(x-4\right)\left(x^2+4x+16\right)\)
h ) \(125x^3+y^6=\left(5x+y^2\right)\left(25x^2-5xy^2+y^4\right)\)
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\) thì \(x=ak;y=bk;z=ck\)
Khi đó \(xy+yz+zx=abk^2+ack^2+bck^2=k^2\left(ab+bc+ac\right)\left(4\right)\)
Từ \(\left(1\right)\) ta có : \(\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}=\frac{2}{\left(n-1\right)n\left(n+1\right)}\)
hay \(a^2+b^2+c^2+2ab+2bc+2ac=1.\)
Do \(\left(2\right)\) nên \(2ab+2ac+2bc=0\) tức là \(ab+bc+ac=0\)
Thay vào \(\left(4\right)\) được \(xy+yz+zx=0\).
\(3x^2+3y^2+4xy+2x-2y+2=0\)
\(\Rightarrow\left(2x^2+4xy+2y^2\right)+\left(x^2+2x+1\right)+\left(y^2-2y+1\right)=0\)
\(\Rightarrow2\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}}\)
Khi đó: \(A=\left(-1+1\right)^{2014}+\left(-1+2\right)^{2015}+\left(1-1\right)^{2016}\)
\(=0+1+0=1\)