Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2^{15}.9^4}{6^3.8^3}\)=\(\frac{2^{15}.\left(3^2\right)^3}{\left(2.3\right)^3.\left(2^3\right)^3}\)=\(\frac{2^{15}.3^6}{2^3.3^3.2^9}\)=\(\frac{2^{15}.3^6}{2^{12}.3^3}\)=\(2^3.3^3\)=8.27=216
317.8111/2710.915
=317.(34)11/(33)10.(32)15
=317.344/330.330
=361/360
=3
a/ \(\left(-0,125\right)^3:80^4=-\frac{1}{512}.80^4=-80000\)
b/ \(\frac{81^{11}.3^{17}}{27^{10}.9^{15}}=3\)
a, ( - 0, 125)^3 . 80^ 4
\(\left(-\frac{1}{8}\right)^3.80^4=\frac{-1^3}{8^3}\cdot8^4\cdot10^4\) = \(-8\cdot10^4=-8.1000=-8000\)
b,\(\frac{81^{11}.3^{17}}{27^{10}.9^{15}}=\frac{3^{4.11}.3^{17}}{3^{3.10}.3^{2.15}}=\frac{3^{44}.3^{17}}{3^{30}.3^{30}}=\frac{3^{44+17}}{3^{30+30}}=\frac{3^{61}}{3^{60}}=3\)
a)
\(\Rightarrow A=\frac{\frac{1}{11}-\frac{1}{13}-\frac{1}{17}}{5\left(\frac{1}{11}-\frac{1}{13}-\frac{1}{17}\right)}+\frac{2\left(\frac{1}{3}-\frac{1}{9}-\frac{1}{27}+\frac{1}{81}\right)}{7\left(\frac{1}{3}-\frac{1}{9}-\frac{1}{27}+\frac{1}{81}\right)}\)
\(\Rightarrow A=\frac{1}{5}+\frac{2}{7}\)
\(\Rightarrow A=\frac{17}{35}\)
b)
\(\Rightarrow B=5\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+....+\frac{1}{56}-\frac{1}{61}\right)\)
\(\Rightarrow B=5\left(\frac{1}{11}-\frac{1}{61}\right)\)
\(\Rightarrow B=5.\frac{50}{671}=\frac{250}{671}\)
c)
\(\Rightarrow C=1-\left(\frac{1}{1.3}+\frac{1}{2.3}+\frac{1}{2.5}+....+\frac{1}{49.25}\right)\)
\(\Rightarrow C=1-2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{49.50}\right)\)
\(\Rightarrow C=1-2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}\right)\)
\(\Rightarrow C=1-1-\frac{1}{25}\)
\(\Rightarrow C=\frac{1}{25}\)
3^12.(3^4)^11/(3^3)^10.(3^2)^15=3^12.3^44/3^30.3^30=3^56/3^30
=3^17.9^22/3^30.9^15=9^7/3^13=3^14/3^13=3^1=3
giùm nhé bạn