Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,\(\frac{3}{2x+6}-\frac{x-6}{x\left(2x+6\right)}\)
=\(\frac{3x}{x\left(2x+6\right)}+\frac{x-6}{x\left(2x+6\right)}\)
=\(\frac{3x+x-6}{x\left(2x+6\right)}\)=\(\frac{4x-6}{x\left(2x+6\right)}=\frac{2\left(2x-3\right)}{x\left(2x+6\right)}\)
\(\frac{x^2-36}{2x+10}\cdot\frac{3}{6-x}=\frac{\left(x-6\right)\left(x+6\right)}{2x+10}\cdot\frac{3}{6-x}=-\frac{3\left(x+6\right)}{2x+10}=-\frac{3x+18}{2x+10}\)
\(\frac{x^2-4}{x^2-9}\cdot\frac{3x+9}{x+2}=\frac{\left(x-2\right)\left(x+2\right)}{\left(x+3\right)\left(x-3\right)}\cdot\frac{3\left(x+3\right)}{x+2}=\frac{3\left(x-2\right)}{x-3}\)
\(\frac{x^3-8}{5x+20}\cdot\frac{x^2+4x}{x^2+2x+4}=\frac{\left(x-2\right)\left(x^2+2x+4\right)}{5\left(x+4\right)}\cdot\frac{x\left(x+4\right)}{x^2+2x+4}=\frac{x\left(x-2\right)}{5}\)
\(\frac{4x+12}{\left(x+4\right)^2}:\frac{3x+9}{x+4}=\frac{4\left(x+3\right)}{\left(x+4\right)^2}\cdot\frac{x+4}{3\left(x+3\right)}=\frac{4}{3\left(x+4\right)}\)
d, (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0
Đặt x2 + 4x + 8 = t ta được:
t2 + 3xt + 2x2 = 0
\(\Leftrightarrow\) t2 + xt + 2xt + 2x2 = 0
\(\Leftrightarrow\) t(t + x) + 2x(t + x) = 0
\(\Leftrightarrow\) (t + x)(t + 2x) = 0
Thay t = x2 + 4x + 8 ta được:
(x2 + 4x + 8 + x)(x2 + 4x + 8 + 2x) = 0
\(\Leftrightarrow\) (x2 + 5x + 8)[x(x + 4) + 2(x + 4)] = 0
\(\Leftrightarrow\) (x2 + 5x + \(\frac{25}{4}\) + \(\frac{7}{4}\))(x + 4)(x + 2) = 0
\(\Leftrightarrow\) [(x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\)](x + 4)(x + 2) = 0
Vì (x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\) > 0 với mọi x
\(\Rightarrow\left[{}\begin{matrix}x+4=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-2\end{matrix}\right.\)
Vậy S = {-4; -2}
Mình giúp bn phần khó thôi!
Chúc bn học tốt!!
c) \(\frac{1}{x-1}\)+\(\frac{2x^2-5}{x^3-1}\)=\(\frac{4}{x^2+x+1}\) (ĐKXĐ:x≠1)
⇔\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)+\(\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
⇒x2+x+1+2x2-5=4x-4
⇔3x2-3x=0
⇔3x(x-1)=0
⇔x=0 (TMĐK) hoặc x=1 (loại)
Vậy tập nghiệm của phương trình đã cho là:S={0}
d: =>4x+6=15x-12
=>4x-15x=-12-6=-18
=>-11x=-18
hay x=18/11
e: =>\(45x+27=12+24x\)
=>21x=-15
hay x=-5/7
f: =>35x-5=96-6x
=>41x=101
hay x=101/41
g: =>3(x-3)=90-5(1-2x)
=>3x-9=90-5+10x
=>3x-9=10x+85
=>-7x=94
hay x=-94/7
4x^2/5y^2 * 5y/6x * 3y/2x= 1/3
(x-2)(x+2)/3(x+4) * x+4/2(x-2)=x+2/6
5(x+2)/4(x-2)* -2(x-2)/x+2=-5/2
mk ko biết làm
xin lỗi bn nhae
xin lỗi vì đã ko giúp được bn
chcus bn học gioi!
nhae@@@
\(C=\left[\frac{x^2.\left(x^2-4\right)+4x^2}{x^2-4}\right].\left[\frac{x}{2.\left(x-2\right)}+\frac{2-2x}{x.\left(x^2-4\right)}.\frac{x^2-4}{x-2}\right]\)
\(C=\frac{x^4-4x^2+4x^2}{x^2-4}.\left[\frac{x}{2.\left(x-2\right)}+\frac{2-2x}{x\left(x-2\right)}\right]\)
\(C=\frac{x^4}{x^2-4}.\left[\frac{x^2}{2x.\left(x-2\right)}+\frac{\left(2-2x\right).2}{2x.\left(x-2\right)}\right]\)
\(C=\frac{x^4}{x^2-4}.\left[\frac{x^2+4-4x}{2x.\left(x-2\right)}\right]\)
\(C=\frac{x^4}{x^2-4}.\frac{\left(x-2\right)^2}{2x.\left(x-2\right)}\)
\(C=\frac{x^4}{\left(x-2\right).\left(x+2\right)}.\frac{\left(x-2\right).\left(x-2\right)}{2x.\left(x-2\right)}\)
\(C=\frac{x^3}{\left(x+2\right).2}\)
ĐKXĐ: \(\hept{\begin{cases}x^2-4x+4\ne0\\x^2-2x\ne0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-2\right)^2\ne0\\x\left(x-2\right)\ne0\end{cases}}}\Rightarrow\hept{\begin{cases}x\ne2\\x\ne0\end{cases}}\)
\(\frac{2x-4}{x^2-4x+4}-\frac{x+2}{x^2-2x}=\frac{2x-4}{\left(x-2\right)^2}-\frac{x+2}{x\left(x-2\right)}\)
\(=\frac{x\left(2x-4\right)-\left(x+2\right)\left(x-2\right)}{x\left(x-2\right)^2}\)
\(=\frac{2x^2-4x-x^2+4}{x\left(x-2\right)^2}=\frac{\left(x-2\right)^2}{x\left(x-2\right)^2}=\frac{1}{x}\)
\(\frac{2x-4}{x^2-4x+4}-\frac{x+2}{x^2-2x}\)
\(=\frac{2\left(x-2\right)}{\left(x-2\right)^2}-\frac{x+2}{x\left(x-2\right)}\)
\(=\frac{2\left(x-2\right)}{\left(x-2\right)^2}+\frac{-\left(x+2\right)}{x\left(x-2\right)}\)
\(=\frac{2\left(x-2\right).x}{\left(x-2\right)^2.x}+\frac{-\left(x+2\right).\left(x-2\right)}{x\left(x-2\right).\left(x-2\right)}\)
\(=\frac{2x\left(x-2\right)}{x\left(x-2\right)^2}+\frac{-\left(x+2\right)\left(x-2\right)}{x\left(x-2\right)^2}\)
\(=\frac{2x\left(x-2\right)-\left(x+2\right)\left(x-2\right)}{x\left(x-2\right)^2}\)
\(=\frac{2-\left(x+2\right)}{1}\)
\(=2-\left(x+2\right)\)