Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{1.2.3.....99}{1.2.3.....98}.\frac{1.2.3......99}{2.3.4.5....100}\)
\(=99.\frac{1}{100}\)
\(=\frac{99}{100}\)
\(A=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{9^2}{9.10}\)
\(A=\frac{1.1.2.2.3.3...9.9}{1.2.2.3.3.4...9.10}\)
\(A=\frac{1}{10}\)
\(B=\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(B=\frac{1}{99}-\left(\frac{1}{99.98}+\frac{1}{98.97}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
\(B=\frac{1}{99}-\left(\frac{1}{99}-\frac{1}{98}+\frac{1}{98}-\frac{1}{97}+...+\frac{1}{3}-\frac{1}{2}+\frac{1}{2}-1\right)\)
\(B=\frac{1}{99}-\left(\frac{1}{99}-1\right)\)
\(B=\frac{1}{99}-\frac{1}{99}+1\)
\(B=1\)
=1/1-1/2+1/2-1/3+1/3-1/4+.........+1/1999-1/2000
=1/1-1/2000
=1999/2000<3/4
Ta có : \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)
\(.\) \(.\)
\(.\)
\(.\) \(.\)
\(.\) \(.\)
\(\frac{1}{2013^2}< \frac{1}{2012\cdot2013}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+.........+\frac{1}{2013^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.....+\frac{1}{2012\cdot2013}\)
Mà \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.....+\frac{1}{2012\cdot2013}=1-\frac{1}{2013}< 1\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+......+\frac{1}{2013^2}< 1\)
Nhớ k cho mình nhé!
Chúc các bạn học tốt!
Xét: \(1-\frac{2}{n\left(n+1\right)}=\frac{n\left(n+1\right)-2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)
Khi đó:
\(1-\frac{2}{2.3}=\frac{1.4}{2.3}\) ; \(1-\frac{2}{3.4}=\frac{2.5}{3.4}\) ; ... ; \(1-\frac{2}{101.102}=\frac{100.103}{101.102}\)
\(\Rightarrow M=\frac{1.4}{2.3}\cdot\frac{2.5}{3.4}\cdot\cdot\cdot\frac{100.103}{101.102}\)
\(M=\frac{\left(1.2...100\right).\left(4.5...103\right)}{\left(2.3...101\right).\left(3.4...102\right)}=\frac{103}{101.3}=\frac{103}{303}\)
Vậy \(M=\frac{103}{303}\)
\(A=\frac{1\cdot2+2\cdot3+3\cdot4+...+20\cdot21}{1+2-3-4+5+6-7-8+...+197+198-199-200+201}\) (1)
đặt \(B=1\cdot2+2\cdot3+3\cdot4+...+20\cdot21\)
\(3B=1\cdot2\cdot3+2\cdot3\cdot3+3\cdot4\cdot3+...+20\cdot21\cdot3\)
\(3B=1\cdot2\cdot\left(3-0\right)+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+20\cdot21\cdot\left(22-19\right)\)
\(3B=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+3\cdot4\cdot5-2\cdot3\cdot4+...+20\cdot21\cdot22-19\cdot20\cdot21\)
\(3B=20\cdot21\cdot22\)
\(B=\frac{20\cdot21\cdot22}{3}=3080\) (2)
đặt \(C=1+2-3-4+5+6-7-8+...+197+197-199-200+201\)
\(C=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(197+198-199-200\right)+201\)
\(C=-4+\left(-4\right)+...+\left(-4\right)+201\) có 50 số -4
\(C=-4\cdot50+201\)
\(C=-200+201\)
\(C=1\) (3)
\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow A=\frac{B}{C}=\frac{30801}{1}=3080\)
b) \(\frac{1^2}{1\cdot2}\cdot\frac{2^2}{2\cdot3}\cdot\frac{3^2}{3\cdot4}\cdot...\cdot\frac{100^2}{100\cdot101}=\frac{\left(1\cdot2\cdot3\cdot...\cdot100\right)}{1\cdot2\cdot3\cdot4\cdot...\cdot100}\cdot\frac{\left(1\cdot2\cdot3\cdot...\cdot100\right)}{2\cdot3\cdot4\cdot...\cdot101}=1\cdot\frac{1}{101}=\frac{1}{101}\)
a không biết
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}+\frac{1}{2^{100}}\)
=>\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}+\frac{1}{2^{99}}\)
=>\(A=2A-A=2+\frac{1}{2^{99}}+\frac{1}{2^{99}}\)
\(A=2+\frac{1}{2^{98}}\)
Vậy: \(A=2+\frac{1}{2^{98}}\)
Gọi \(B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\)
\(\Rightarrow2B=2+1+\frac{1}{2}+...+\frac{1}{2^{99}}\)
\(\Rightarrow2B-B=\left(2+1+\frac{1}{2}+...+\frac{1}{2^{99}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\right)\)
\(\Rightarrow B=2-\frac{1}{2^{100}}\)
\(\Rightarrow A=2\)
Vậy A = 2
a)1.2.3.4...9-1.2.3.4...8-1.2.3.4...8.8
=1.2.3.4...8(9-1-8)
=1.2.3.4...8.0
=0
b)(3.4.216)2/11.123.411-169=(3.22.216)2/11.213.222-236=32.24.232/11.235-236=32.226/235.(11-2)
=32.236/235.9=32.236/235.32=2
c)70.(131313/565656+131313/727272+131313/909090
=70.(13/56+13/72+13/90)
=70.39/70=39
d)1/4.9+1/9.14+1/14.19+...+1/64.69
=4/4.9.4+4/9.4.14+4/14.19.4+...+4/64.69.4.
=1/4.(4/4.9+4/9.14+4/14.19+...+4/64.69)
=1/4.(1/4-1/9+1/9-1/14+1/14-1/19+...+1/64-1/69)
=1/4.(1/4-1/69)
=1/4.65/276=65/1104
~~~~~~~~Chúc bạn học giỏi nhé !~~~~~~~~
2/1.2*2/20.21
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{20.21}\)
\(=2\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{20.21}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{20}-\frac{1}{21}\right)\)
\(=2\left(1-\frac{1}{21}\right)=2.\frac{20}{21}=\frac{40}{21}\)