Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
. Tham khảo nha !!!
\(\frac{16}{15.31}+\frac{14}{31.45}+\frac{7}{45.52}+\frac{7}{52.65}+\frac{1}{13.70}\)
\(=\frac{16}{15.31}+\frac{14}{31.45}+\frac{7}{45.52}+\frac{7}{52.65}+\frac{5}{65.70}\)
\(=\frac{1}{15}-\frac{1}{31}+\frac{1}{31}-\frac{1}{45}+\frac{1}{45}-\frac{1}{52}+\frac{1}{52}-\frac{1}{65}+\frac{1}{65}-\frac{1}{70}\)
\(=\frac{1}{15}-\frac{1}{70}\)
\(=\frac{70}{1050}-\frac{15}{1050}\)
\(=\frac{55}{1050}\)
\(=\frac{11}{210}\)
Chúc bạn học tốt !!!
\(\frac{16}{15.31}+\frac{14}{31.45}+\frac{7}{45.52}+\frac{13}{52.65}+\frac{1}{13.70}\)
\(=\frac{16}{15.31}+\frac{14}{31.45}+\frac{7}{45.52}+\frac{13}{52.65}+\frac{5}{65.70}\)
\(=\frac{1}{15}-\frac{1}{31}+\frac{1}{31}-\frac{1}{45}+\frac{1}{45}-\frac{1}{52}+\frac{1}{52}-\frac{1}{65}+\frac{1}{65}-\frac{1}{70}=\frac{1}{15}-\frac{1}{70}=\frac{11}{210}\)
Lời giải:
$A=\frac{15-5}{5.15}+\frac{31-15}{15.31}+\frac{45-31}{31.45}+\frac{52-45}{45.52}+\frac{65-52}{52.65}+\frac{1}{13.70}+\frac{1}{70.15}$
$=\frac{1}{5}-\frac{1}{15}+\frac{1}{15}-\frac{1}{31}+\frac{1}{31}-\frac{1}{45}+\frac{1}{45}-\frac{1}{52}+\frac{1}{52}-\frac{1}{65}+\frac{1}{70}(\frac{1}{13}+\frac{1}{15})$
$=\frac{1}{5}-\frac{1}{65}+\frac{1}{70}.\frac{28}{195}$
$=\frac{12}{65}+\frac{2}{95}$
$=\frac{254}{1325}$
1. a) \(\frac{-2}{7}+\frac{15}{23}+\frac{\left(-15\right)}{17}+\frac{4}{19}+\frac{8}{23}\)
\(=\left(\frac{-2}{7}+\frac{-5}{7}\right)+\left(\frac{15}{23}+\frac{8}{23}\right)+\frac{4}{19}\)
\(=\left(-1\right)+1+\frac{4}{19}\)
\(=0+\frac{4}{19}=\frac{4}{19}\)
b) \(\frac{7}{19}\cdot\frac{8}{11}+\frac{7}{19}\cdot\frac{3}{11}+\frac{12}{19}\)
\(=\frac{7}{19}\cdot\left(\frac{8}{11}+\frac{3}{11}\right)+\frac{12}{19}\)
\(=\frac{7}{19}\cdot1+\frac{12}{19}\)
\(=\frac{7}{19}+\frac{12}{19}=\frac{19}{19}=1\)
2. a) \(\frac{1}{3}+\frac{\left(-2\right)}{16}-\frac{7}{14}\)
\(=\frac{5}{24}-\frac{1}{2}\)
\(=-\frac{7}{24}\)
b) \(11\frac{3}{13}-2\frac{4}{7}+5\frac{3}{13}\)
\(=\left(11-2+5\right)+\frac{3}{13}-\frac{4}{7}+\frac{3}{13}\)
\(=14+\left(-\frac{10}{91}\right)\)
\(=-14\frac{10}{91}\)
c) \(0,7\cdot2\frac{2}{3}\cdot20\cdot0,375\cdot\frac{5}{28}\)
\(=\frac{7}{10}\cdot\frac{8}{3}\cdot20\cdot\frac{3}{8}\cdot\frac{5}{28}\)
\(=\left(\frac{7}{10}\cdot\frac{5}{28}\right)\cdot\left(\frac{8}{3}\cdot\frac{3}{8}\right)\cdot20\)
\(=\frac{1}{8}\cdot1\cdot20\)
\(=\frac{20}{8}=\frac{5}{2}\)
d) \(\frac{6}{7}+\frac{5}{7}:5-\frac{8}{9}\)
\(=\frac{6}{7}+\frac{1}{7}-\frac{8}{9}\)
\(=1-\frac{8}{9}\)
\(=\frac{1}{9}\)
~Học tốt~
\(3\frac{14}{19}+\frac{13}{17}+\frac{35}{43}+6\)
\(=\frac{71}{19}+\frac{13}{17}+\frac{35}{43}+6\)
\(=\frac{1454}{323}+\frac{35}{43}+6\)
\(=5,...+6\)
\(=11,...\)
\(Bai2a\)\(A=\frac{\sqrt{3}-\sqrt{6}}{1-\sqrt{2}}-\frac{2+\sqrt{8}}{1+\sqrt{2}}\)
\(=\frac{\sqrt{3}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}-\frac{2\left(1+\sqrt{2}\right)}{1+\sqrt{2}}\)
\(=\sqrt{3}-2\)
\(VayA=\sqrt{3}-2\)
\(C=\frac{16}{15.31}+\frac{14}{31.45}+\frac{7}{45.52}+\frac{7}{52.65}+\frac{1}{13.70}\)
\(C=\frac{16}{15.31}+\frac{14}{31.45}+\frac{7}{45.52}+\frac{13}{52.65}+\frac{5}{67.70}\)
\(C=\frac{1}{15}-\frac{1}{31}+\frac{1}{31}-\frac{1}{45}+\frac{1}{45}-\frac{1}{52}+\frac{1}{52}-\frac{1}{65}+\frac{1}{65}-\frac{1}{70}\)
\(C=\frac{1}{15}-\frac{1}{70}\)
\(C=\frac{11}{210}\)
Vậy: \(C=\frac{11}{210}\)
= 1/15 - 1/31 + 1/31 - 1/45 + 1/45 - 1/52 + 1/52 - 1/65 + 1/13.70
= 1/15 - 1/65 + 1/13.70
= 2/39 + 1/910
= 11/210
Tk mk nha
=(1/15-1/31+1/31-1/45+1/45-1/52+1/52-1/65)+1/910
=(1/15-1/65)+1/910
=2/39+1/910=140/2730+3/2730=11/210
Tk mình nha bn !