Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = \(3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
\(=3\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)
Đặt A = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
2A = \(2\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)
= \(2+1+\frac{1}{2}+....+\frac{1}{2^8}\)
\(2A-A=\left(2+1+\frac{1}{2}+...+\frac{1}{2^8}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)
\(A=2-\frac{1}{2^9}\)
\(\Rightarrow S=3\left(2-\frac{1}{2^9}\right)=\frac{3.\left(2^{10}-1\right)}{2^9}\)
1)
Dễ thấy \(B=\dfrac{10^{19}}{10^{19}-3}>1\)
\(\Rightarrow B=\dfrac{10^{19}}{10^{19}-3}>\dfrac{10^{19}+2}{10^{19}-3+2}=\dfrac{10^{19}+2}{10^{19}-1}=A\)
\(=\frac{3}{200}:\frac{3}{5}+\frac{3}{2}\left(\frac{4}{25}-\frac{2}{5}\right)-\frac{1}{25}.\left(\frac{7}{4}:\frac{7}{5}-\frac{5}{2}\right)\)
\(=\frac{3.5}{200.3}+\frac{3}{2}\left(\frac{4}{25}-\frac{2.5}{25}\right)-\frac{1}{25}\left(\frac{7.5}{4.7}-\frac{5}{2}\right)\)
\(=\frac{1}{40}+\frac{3}{2}\left(\frac{-6}{25}\right)-\frac{1}{25}\left(\frac{5}{4}-\frac{10}{4}\right)\)
\(=\frac{1}{40}-\frac{9}{25}+\frac{1}{20}\)
\(=\frac{1.5}{40.5}-\frac{9.8}{25.8}+\frac{1.10}{20.10}\)
\(=\frac{5-72+10}{200}=\frac{-57}{200}\)
1,6 x 25/32 - ( 2/3+4/5) : 11/5
= (5/4 : 11/5) - ( 2/3 + 4/5 )
= 25/44 - 22/15
= -0,89(84)
n=\(\frac{2}{3}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)
n=\(\frac{2}{3}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
n=\(\frac{2}{3}\left(1-\frac{1}{99}\right)\)
n=\(\frac{2}{3}\times\frac{98}{99}\)
n=\(\frac{196}{297}\)
Câu \(M=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{2}{99.100}\)Bạn viết \(\frac{3}{99.100}=\frac{2}{99.100}\)mik sửa lại nhé.
\(M=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.100}\)
\(M=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{100-99}{99.100}\)
\(M=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(M=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{100}\right)\)
\(M=\frac{3}{2}.\frac{99}{100}=\frac{297}{200}\)
\(N=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+....+\frac{3}{97.99}\)
\(N=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+....+\frac{99-97}{97.99}\)
\(N=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{97}-\frac{1}{99}\right)\)
\(N=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{99}\right)\)
\(\Rightarrow N=\frac{3}{2}.\frac{98}{99}=\frac{49}{33}\)
Ta thấy : \(\frac{297}{200}>\frac{49}{33}\Rightarrow M>N\)
= 1.2.3.....99/2.3.4....100
=1/100
k mk nha đáp án đúng đó
Mik tính được 1/100