Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{9.11}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{11}\right)\)
\(=\frac{1}{2}.\frac{10}{11}\)
\(=\frac{5}{11}\)
\(=\frac{1}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+....+\frac{2}{9\times11}\right)\)
\(=\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{9}-\frac{1}{11}\right)\)
\(=\frac{1}{2}\times\left(1-\frac{1}{11}\right)\)
\(=\frac{1}{2}\times\frac{10}{11}\)
\(=\frac{5}{11}\)
\(\left(\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+\frac{2}{7x9}+\frac{2}{9x11}\right).y=\frac{2}{3}\)
\(\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)y=\frac{2}{3}\)
\(\left(1-\frac{1}{11}\right).y=\frac{2}{3}\)
\(\frac{10}{11}.y=\frac{2}{3}\)
\(y=\frac{2}{3}.\frac{11}{10}\)
\(y=\frac{22}{30}\)
\(\frac{2}{1x3}+\)\(\frac{2}{3x5}+\)\(\frac{2}{5x7}+\)\(\frac{2}{7x9}+\frac{2}{9x11}+\frac{2}{11x13}\)
= \(\frac{3-1}{1x3}+\frac{5-3}{3x5}+\frac{7-5}{5x7}+\frac{9-7}{7x9}+\frac{11-9}{9x11}\)\(+\frac{13-11}{11x13}\)
= \(\frac{3}{1x3}-\frac{1}{1x3}+\frac{5}{3x5}-\frac{3}{3x5}+\frac{7}{5x7}-\frac{5}{5x7}+\frac{9}{7x9}-\frac{7}{7x9}+\frac{11}{9x11}\)\(-\frac{9}{9x11}\)\(+\frac{13}{11x13}-\frac{11}{11x13}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\)\(\frac{1}{13}\)
= \(1-\frac{1}{13}=\frac{12}{13}\)
\(.A=\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2011}-\frac{1}{2013}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{2013}\right)\)
\(A=\frac{1004}{10065}\)
<a class="ptip tipped" data-name="Nguyễn Ngọc Sáng" data-image="http://olm.vn/images/avt/avt424601_60by60.jpg" href="/thanhvien/nguyenngocsang6a" data-uid="125744" data-hasqtip="true" aria-describedby="qtip-2"> Sáng Nguyễn </a>
A=1/5x7+11/7x9+1/9x11+....+1/2011x2013
2xA=2x(1/5x7+1/7x9+1/9x11+...+1/2011x2013
2xA=2/5x7+2/7x9+2/9x11+...+2/2011x2013
2xA=1/5-1/7+1/7-1/9+1/9-1/11+...+1/2011-1/2013
2xA=1/5-1/2013
2xA=2013/10045-5/10045
2xA=2008/10045
A=2008/10045:2
A=2008/10045x1/2
A=1004/10045
\(\frac{1}{5.7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}+...+\frac{1}{2009\cdot2011}+\frac{1}{x}=\frac{1}{5}\cdot0,5\)
\(=\frac{7-5}{5\cdot7}+\frac{9-7}{7\cdot9}+\frac{11-9}{9\cdot11}+...+\frac{2011-2009}{2009\cdot2011}+\frac{1}{x}=\frac{1}{10}\)
\(=\left[\frac{1}{2}\cdot\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{2009}-\frac{1}{2011}\right)\right]+\frac{1}{x}=\frac{1}{10}\)
\(=\left[\frac{1}{2}\cdot\left(\frac{1}{5}-\frac{1}{2011}\right)\right]+\frac{1}{x}=\frac{1}{10}\)
\(=\left(\frac{1}{2}\cdot\frac{2006}{10055}\right)+\frac{1}{x}=\frac{1}{10}\)
\(=\frac{1003}{10055}+\frac{1}{x}=\frac{1}{10}\)
\(\Rightarrow\frac{1}{x}=\frac{1}{10}-\frac{1003}{10055}\)
\(\frac{1}{x}=\frac{1}{4022}\)
\(\Rightarrow x=1\div\frac{1}{4022}=4022\)
p=1/(3*5)+1/(5*7)+.....+1/(2015*2017)+1/(2017*2019)
<=> p = 1/3-1/5+1/5-1/7+1/7-......+1/2017-1/2019
<=> p = 1/3 - 1/2019
<=> p = 224/673
\(P=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{2015.2017}+\frac{1}{2017.2019}\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2017}-\frac{1}{2019}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{2019}\right)\)
\(=\frac{112}{673}\)
\(2A=\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+...+\frac{2}{999x1001}\)
\(2A=\frac{3-1}{1x3}+\frac{5-3}{3x5}+\frac{7-5}{5x7}+...+\frac{1001-999}{999x1001}\)
\(2A=\frac{3}{1x3}-\frac{1}{1x3}+\frac{5}{3x5}-\frac{3}{3x5}+\frac{7}{5x7}-\frac{5}{5x7}+...+\frac{1001}{999x1001}-\frac{999}{999x1001}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{999}-\frac{1}{1001}\)
\(2A=1-\frac{1}{1001}=\frac{1000}{1001}\)=> A = 500/1001
Tìm x:
\(\left(\frac{1}{3x5}+\frac{1}{5x7}+\frac{1}{7x9}+.....+\frac{1}{19x21}\right).x=\frac{9}{7}\)
\(\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{19.21}\right)x=\frac{9}{7}\)
\(\left[\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\right)\right]x=\frac{9}{7}\)
\(\left[\frac{1}{2}\left(\frac{1}{3}-\frac{1}{21}\right)\right]x=\frac{9}{7}\)
\(\left(\frac{1}{2}.\frac{2}{7}\right)x=\frac{9}{7}\)
\(\frac{1}{7}.x=\frac{9}{7}\)
\(x=\frac{9}{7}\div\frac{1}{7}\)
\(x=9\)
Vậy ...
\(S.2=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(S.2=\frac{1}{1}-\frac{1}{11}\)
\(S.2=\frac{10}{11}\)
\(S=\frac{10}{11}:2\)
\(S=\frac{5}{11}\)
S = 5/11