K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2015

\(=\frac{11}{25}\left(-248-75.2\right)=\frac{11}{25}.\left(-398\right)=-\frac{4378}{25}\)

\(B=\left(-13\cdot\frac{2}{5}+\frac{-2}{9}\div2\frac{1}{2}+\frac{2}{5}\cdot\frac{11}{9}\right)\cdot2\frac{1}{2}\)

\(B=\left(13\cdot\frac{2}{5}+\frac{-2}{9}\cdot\frac{2}{5}+\frac{2}{5}\cdot\frac{11}{9}\right)\cdot\frac{5}{2}\)

\(B=\left[\frac{2}{5}\cdot\left(-13+\frac{-2}{9}+\frac{11}{9}\right)\right]\cdot\frac{5}{2}\)

\(B=\left[\frac{2}{5}\cdot\left(-12\right)\right]\cdot\frac{5}{2}\)

\(B=\frac{-24}{5}\cdot\frac{5}{2}=-12\)

11 tháng 12 2019

a) \(\frac{15}{12}+\frac{5}{13}-\frac{3}{12}-\frac{18}{13}=\left(\frac{15}{12}-\frac{3}{12}\right)+\left(\frac{5}{13}-\frac{18}{13}\right)\)

                                                     \(=1+\left(-1\right)\)

                                                     \(=0\)

b) \(\frac{11}{24}-\frac{5}{41}+\frac{13}{24}+0,5-\frac{36}{41}=\left(\frac{11}{24}+\frac{13}{24}\right)+\left(-\frac{5}{41}-\frac{36}{41}\right)+0,5\)

                                                                    \(=1+\left(-1\right)+0,5\)

                                                                    \(=0,5\)

_Học tốt nha_

11 tháng 12 2019

a, \(\frac{15}{12}\)\(\frac{5}{13}\)\(\frac{3}{12}\)-\(\frac{18}{13}\)

\(\frac{5}{4}\)\(\frac{5}{13}\) - \(\frac{1}{4}\) - \(\frac{18}{13}\)

\(\left(\frac{5}{4}-\frac{1}{4}\right)\)\(\left(\frac{5}{13}-\frac{18}{13}\right)\)

= 1 - 1 = 0

b, \(\frac{11}{24}\)\(\frac{5}{41}\)\(\frac{13}{24}\)+ 0,5 - \(\frac{36}{41}\)

\(\left(\frac{11}{24}+\frac{13}{24}\right)\)\(\left(\frac{5}{41}+\frac{36}{41}\right)\)+ 0,5

= 1 - 1 + 0,5 = 0,5

c,  \(\left(-\frac{3}{4}+\frac{2}{3}\right):\frac{5}{11}+\left(-\frac{1}{4}+\frac{1}{3}\right):\frac{5}{11}\)

=\(\left(-\frac{3}{4}+\frac{2}{3}\right).\frac{11}{5}+\left(-\frac{1}{4}+\frac{1}{3}\right).\frac{5}{11}\)

\(\frac{11}{5}.\left(-\frac{3}{4}+\frac{2}{3}-\frac{1}{4}+\frac{1}{3}\right)\)

\(\frac{11}{5}.\left[\left(-\frac{3}{4}-\frac{1}{4}\right)+\left(\frac{2}{3}+\frac{1}{3}\right)\right]\)

=  \(\frac{11}{5}.\left[\left(-1\right)+1\right]\)

= 0

d, \(\left(-3\right)^2.\left(\frac{3}{4}-0,25\right)-\left(3\frac{1}{2}-1\frac{1}{2}\right)\)

\(9.\left(0,75-0,25\right)-2\)

= 9. 0,5 - 2 = 2,5

e, \(\frac{13}{25}+\frac{6}{41}-\frac{38}{25}+\frac{35}{41}-\frac{1}{2}\)

\(\left(\frac{13}{25}-\frac{38}{25}\right)+\left(\frac{6}{41}+\frac{35}{41}\right)-\frac{1}{2}\)

= -1 + 1 - \(\frac{1}{2}\)

\(-\frac{1}{2}\)

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a)

\(\begin{array}{l}A = \frac{5}{{11}}.\left( {\frac{{ - 3}}{{23}}} \right).\frac{{11}}{5}.\left( { - 4,6} \right)\\A = \frac{5}{{11}}.\left( {\frac{{ - 3}}{{23}}} \right).\frac{{11}}{5}.\frac{{ - 23}}{5}\\A = \frac{{5.\left( { - 3} \right).11.\left( { - 23} \right)}}{{11.23.5.5}}\\A = \frac{3}{5}\end{array}\)  

b)

\(\begin{array}{l}B = \left( {\frac{{ - 7}}{9}} \right).\frac{{13}}{{25}} - \frac{{13}}{{25}}.\frac{2}{9}\\B = \frac{{13}}{{25}}.\left( {\frac{{ - 7}}{9} - \frac{2}{9}} \right)\\B = \frac{{13}}{{25}}.(-1)\\B = \frac{{-13}}{{25}}.\end{array}\)

Bài 1:...
Đọc tiếp

Bài 1: Tính

a. \(\left(1+\frac{1}{1\cdot3}\right)\cdot\left(1+\frac{1}{2\cdot4}\right)\cdot\left(1+\frac{1}{3\cdot5}\right)+\left(1+\frac{1}{4\cdot6}\right).....\left(1+\frac{1}{99\cdot101}\right)\)

b. \(\left[\sqrt{0,64}+\sqrt{0,0001}-\sqrt{\left(-0,5\right)^2}\right]\div\left[3\cdot\sqrt{\left(0,04\right)^2}-\sqrt{\left(-2\right)^4}\right]\)

c. \(\frac{5.4^{15}\cdot9^9-4.3^{20}\cdot8^9}{5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6}-\frac{2^{19}\cdot6^{15}-7\cdot6^{10}\cdot2^{20}\cdot3^6}{9\cdot6^{19}\cdot2^9-4\cdot3^{17}\cdot2^{26}}+0,\left(6\right)\)

Bài 2: Tìm x, y, z biết :
a. \(\left(x-10\right)^{1+x}=\left(x-10\right)^{x+2009}\left(x\in Z\right)\)

b. \(\left|x-2007\right|+\left|x-2008\right|+\left|y-2009\right|+\left|x-2010\right|=3\left(x,y\in N\right)\) 

c. \(25-y^2=8\left(x-2009\right)^2\left(x,y\in Z\right)\)

d. \(2008\left(x-4\right)^2+2009\left|x^2-16\right|+\left(y+1\right)^2\le0\)

e. \(2x=3y\) ; \(4z=5x\) và \(3y^2-z^2=-33\)

Bài 3: Chứng minh rằng

a. \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2009^2}>\frac{1}{2009}\)

b. \(\left[75\cdot\left(4^{2008}+4^{2007}+4^{2006}+...+4+1\right)+25\right]⋮100\)

Bài 4: 

a. Tìm giá trị nhỏ nhất của biểu thức : \(M=\left(x^2+2\right)+\left|x+y-2009\right|+2005\)

b. So sánh: \(31^{11}\) và \(\left(-17\right)^{14}\)

c. So sánh: \(\left(\frac{9}{11}-0,81\right)^{2012}\) và \(\frac{1}{10^{4024}}\)

1

Bài 1 :\(a,=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{100^2}{99.101}\)

           \(=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4...101}\)

          \(=100.\frac{2}{101}=\frac{200}{101}\)

\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)\)

\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)...\left(\frac{1}{125}-\frac{1}{5^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)\)

\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)...0...\left(\frac{1}{125}-\frac{1}{25^3}\right)\)

\(=0\)