\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)có lời giải...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2019

F = \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)

F = \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)

F = \(\frac{1}{3}-\left(\frac{1}{5}-\frac{1}{5}\right)-\left(\frac{1}{7}-\frac{1}{7}\right)-\left(\frac{1}{9}-\frac{1}{9}\right)-...-\left(\frac{1}{97}-\frac{1}{97}\right)-\frac{1}{99}\)

F = \(\frac{1}{3}-\frac{1}{99}\)

F = \(\frac{32}{99}\)

2 tháng 3 2019

\(F=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{97\cdot99}\)

\(\Rightarrow F=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{97}-\frac{1}{99}\)

\(\Rightarrow F=\frac{1}{3}-\frac{1}{99}\)

\(\Rightarrow F=\frac{32}{99}\)

2 tháng 3 2019

E = \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

E = \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

E = \(\frac{1}{2}-\left(\frac{1}{3}-\frac{1}{3}\right)-\left(\frac{1}{4}-\frac{1}{4}\right)-\left(\frac{1}{5}-\frac{1}{5}\right)-...-\left(\frac{1}{99}-\frac{1}{99}\right)-\frac{1}{100}\)

E = \(\frac{1}{2}-\frac{1}{100}\)

E = \(\frac{49}{100}\)

4 tháng 4 2016

Từ bài <=>M = 1/3 - 1/5+1/5-1/7+1/7-1/9+...+1/97-1/99=1/3-1/99=32/99

4 tháng 4 2016

M = \(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{97\cdot99}\)

M = ( \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\))

M = \(\frac{1}{3}-\frac{1}{99}\)

M = \(\frac{32}{99}\)

2 tháng 5 2018

\(A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}+\frac{2}{99.101}\)

\(A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\)

\(A=1-\frac{1}{101}\)

\(A=\frac{101}{101}-\frac{1}{101}\)

\(A=\frac{100}{101}\)

Chúc bạn học tốt !!! 

2 tháng 5 2018

A = 1/1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ... + 1/99 - 1/101 

A = 1/1 - 1/101 

A = 101/101 - 1/101 

A = 100/101 

17 tháng 5 2019

\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)

\(=\frac{1}{3}-\frac{1}{99}\)

Tự tính

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)

\(=\frac{1}{3}-\frac{1}{99}\)

\(=\frac{32}{99}\)

27 tháng 3 2017

\(M=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.......+\frac{1}{97}-\frac{1}{99}\right).\)

 \(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{99}\right)=\frac{1}{2}x\frac{32}{99}=\frac{32}{198}\)

bn tự rút gọn nha mk mới làm tắt đó

27 tháng 3 2017

Ta có : \(M=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-...+\frac{1}{97}-\frac{1}{99}\)

\(=\frac{1}{3}-\frac{1}{99}\)

\(=\frac{33}{99}-\frac{1}{99}\)

\(=\frac{32}{99}\)

6 tháng 5 2018

= 2 . ( \(\frac{1}{3}\)-  \(\frac{1}{5}\)+  \(\frac{1}{5}\)-  \(\frac{1}{7}\)+  ..... +  \(\frac{1}{97}\)-   \(\frac{1}{99}\)

= 2 . (  \(\frac{1}{3}\)-  \(\frac{1}{99}\)

= 2 . \(\frac{2}{3}\)

\(\frac{4}{3}\)

32% = \(\frac{32}{100}\)=  \(\frac{8}{25}\)

\(\frac{4}{3}\)>   \(\frac{8}{25}\)=>  \(\frac{2}{3.5}\)+   \(\frac{2}{5.7}\)+   \(\frac{2}{7.9}\)+ ..... + \(\frac{2}{97.99}\)>  32%

6 tháng 5 2018

\(A=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)

\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)

\(A=\frac{1}{3}-\frac{1}{99}=\frac{33}{99}-\frac{1}{99}=\frac{32}{99}=\frac{800}{2475}\)

\(32\%=\frac{8}{25}=\frac{792}{2475}\)

\(\frac{800}{2475}>\frac{792}{2475}\Rightarrow\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}>32\%\)

6 tháng 5 2018

Đặt : \(A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)

\(=\frac{1}{3}-\frac{1}{99}=\frac{33}{99}-\frac{1}{99}=\frac{32}{99}\)

Do \(\frac{32}{99}>32\%\)nên \(A>32\%\left(đpcm\right)\)

6 tháng 5 2018

7/15=1/5+4/15

Gọi 2/3.5 +2/5.7 +2/7.9 +...+2/97.99 là A

A=2/3.5 +2/5.7 +2/7.9+...+ 2/97.99

A= 1.(1/3-1/5+1/5-1/7+1/7-1/9+...+1/97-1/99)

A=1.(1/3-1/99)

A=1.32/99

A=32/99

Ta có: A>8/25

=>32/99>8.25

Vậy 2/3.5+2/5.7+2/7.9+...+2/97.99>8/25

k cho mk nha!!!

22 tháng 2 2020

\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)

\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}>\frac{32}{100}=\frac{8}{25}\)

9 tháng 5 2016

Ta có: \(M=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+......+\frac{2}{97.99}\)

         \(M=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+......+\frac{1}{97}-\frac{1}{99}\)

         \(M=\frac{1}{3}-\frac{1}{99}\)

        \(M=\frac{32}{99}\)

9 tháng 5 2016

\(M=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{97\cdot99}\)

\(M=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)

\(M=\frac{1}{3}-\frac{1}{99}\)

\(M=\frac{32}{99}\)