Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{100^2}\right)\)
\(B=\left(\dfrac{2^2}{2^2}-\dfrac{1}{2^2}\right)\cdot\left(\dfrac{3^2}{3^2}-\dfrac{1}{3^2}\right)....\left(\dfrac{100^2}{100^2}-\dfrac{1}{100^2}\right)\)
\(B=\dfrac{2^2-1}{2^2}\cdot\dfrac{3^2-1}{3^2}....\cdot\dfrac{100^2-1}{100^2}\)
\(B=\dfrac{\left(2+1\right)\left(2-1\right)}{2^2}\cdot\dfrac{\left(3+1\right)\left(3-1\right)}{3^2}\cdot...\cdot\dfrac{\left(100+1\right)\left(100-1\right)}{100^2}\)
\(B=\dfrac{1\cdot3}{2^2}\cdot\dfrac{2\cdot4}{3^2}\cdot\dfrac{3\cdot5}{4^2}\cdot...\cdot\dfrac{99\cdot101}{100^2}\)
\(B=\dfrac{1\cdot2\cdot3\cdot4\cdot5\cdot...\cdot101}{2^2\cdot3^2\cdot4^2\cdot5^2\cdot....\cdot100^2}\)
\(B=\dfrac{1\cdot101}{2\cdot3\cdot4\cdot5\cdot...\cdot100}\)
\(B=\dfrac{101}{2\cdot3\cdot4\cdot5\cdot...\cdot100}\)
Mà: \(\dfrac{1}{2}=\dfrac{3\cdot4\cdot5\cdot...\cdot100}{2\cdot3\cdot4\cdot...\cdot100}\)
Ta có: \(101< 3\cdot4\cdot5\cdot...\cdot100\)
\(\Rightarrow\dfrac{101}{2\cdot3\cdot4\cdot5\cdot...\cdot100}< \dfrac{3\cdot4\cdot5\cdot...\cdot100}{2\cdot3\cdot4\cdot...\cdot100}\)
\(\Rightarrow B< \dfrac{1}{2}\)
\(S=1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{100}\left(1+2+3+...+100\right)\)
\(=1+\dfrac{1}{2}.\dfrac{2\left(1+2\right)}{2}+\dfrac{1}{3}.\dfrac{3\left(1+3\right)}{2}+\dfrac{1}{4}.\dfrac{4\left(1+4\right)}{2}+...+\dfrac{1}{100}.\dfrac{100\left(1+100\right)}{2}\)
\(=1+\dfrac{2\left(1+2\right)}{2.2}+\dfrac{3\left(1+3\right)}{2.3}+\dfrac{4\left(1+4\right)}{2.4}+...+\dfrac{100\left(1+100\right)}{2.100}\)
\(=1+\dfrac{1+2}{2}+\dfrac{1+3}{2}+\dfrac{1+4}{2}+...+\dfrac{1+100}{2}\)
\(=1+\dfrac{3+4+5+...+101}{2}\)
\(=1+\dfrac{\dfrac{99\left(101+3\right)}{2}}{2}\)
\(=1+2574=2575\)
\(\)
Áp dụng \(1+2+...+n=\dfrac{n\left(n+1\right)}{2}\)
\(\Rightarrow\dfrac{1}{n}\left(1+2+...+n\right)=\dfrac{n\left(n+1\right)}{2n}=\dfrac{n+1}{2}\)
Vậy:
\(A=\dfrac{1}{2}+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{101}{2}=\dfrac{1+2+3+...+100}{2}-1\)
\(=\dfrac{100.101}{2}-1=5049\)
Bài 2 :
\(S=\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+............+\dfrac{2017}{4^{2017}}\)
\(\Leftrightarrow4S=1+\dfrac{2}{4}+\dfrac{3}{4^2}+...........+\dfrac{2017}{4^{2016}}\)
\(\Leftrightarrow4S-S=\left(1+\dfrac{2}{4}+\dfrac{3}{4^2}+..........+\dfrac{2017}{4^{2016}}\right)-\left(\dfrac{1}{4}+\dfrac{2}{4^2}+..........+\dfrac{2017}{4^{2017}}\right)\)
\(\Leftrightarrow3S=1+\dfrac{1}{4}+\dfrac{1}{4^2}+.........+\dfrac{1}{4^{2016}}-\dfrac{2017}{4^{2016}}\)
Đặt :
\(A=1+\dfrac{1}{4}+\dfrac{1}{4^2}+..........+\dfrac{1}{4^{2016}}\)
\(\Leftrightarrow4A=4+1+\dfrac{1}{4}+\dfrac{1}{4^2}+..........+\dfrac{1}{4^{2015}}\)
\(\Leftrightarrow4A-A=\left(4+1+\dfrac{1}{4}+.......+\dfrac{1}{4^{2015}}\right)-\left(1+\dfrac{1}{4}+.......+\dfrac{1}{4^{2016}}\right)\)
\(\Leftrightarrow3A=4-\dfrac{1}{4^{2016}}\)
\(\Leftrightarrow D=\dfrac{4}{3}-\dfrac{1}{2^{2016}.3}\)
\(\Leftrightarrow3S=\dfrac{4}{3}-\dfrac{1}{2^{2016}.3}-\dfrac{2017}{4^{2016}}\)
\(\Leftrightarrow3S< \dfrac{4}{3}\)
\(\Leftrightarrow S< \dfrac{4}{9}\)
\(\Leftrightarrow S< \dfrac{1}{2}\rightarrowđpcm\)
\(A=\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{2017}{4^{2017}}\) ( A cho đẹp :v)
\(4A=4\left(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{2017}{4^{2017}}\right)\)
\(4A=1+\dfrac{2}{4}+\dfrac{3}{4^2}+...+\dfrac{2017}{4^{2016}}\)
\(4A-A=\left(1+\dfrac{2}{4}+\dfrac{3}{4^2}+...+\dfrac{2017}{4^{2016}}\right)-\left(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{2017}{4^{2017}}\right)\)\(3A=1+\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+...+\dfrac{1}{4^{2016}}-\dfrac{2017}{4^{2017}}\)
Đặt:
\(M=1+\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+...+\dfrac{1}{4^{2016}}\)
\(4M=4\left(1+\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+...+\dfrac{1}{4^{2016}}\right)\)
\(4M=4+1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2015}}\)
\(4M-M=\left(4+1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2015}}\right)-\left(1+\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+...+\dfrac{1}{4^{2016}}\right)\)\(3M=4-\dfrac{1}{4^{2016}}\)
\(M=\dfrac{4}{3}-\dfrac{1}{4^{2016}}\)
Thay M vào A ta có:
\(A=\dfrac{4}{9}-\dfrac{1}{4^{2016}.3}-\dfrac{2017}{4^{2017}}\)
\(\Rightarrow A< \dfrac{1}{2}\Rightarrowđpcm\)
a: \(\dfrac{3}{4}+\dfrac{1}{4}:x=-2\dfrac{1}{2}\)
=>\(\dfrac{1}{4}:x=-\dfrac{5}{2}-\dfrac{3}{4}=-\dfrac{10}{4}-\dfrac{3}{4}=-\dfrac{13}{4}\)
=>\(x=\dfrac{-1}{4}:\dfrac{13}{4}=\dfrac{-1}{4}\cdot\dfrac{4}{13}=\dfrac{-1}{13}\)
b: \(\left(\dfrac{2}{3}\right)^{100}:x=\left(-\dfrac{2}{3}\right)^{98}\)
=>\(\left(\dfrac{2}{3}\right)^{100}:x=\left(\dfrac{2}{3}\right)^{98}\)
=>\(x=\left(\dfrac{2}{3}\right)^{100}:\left(\dfrac{2}{3}\right)^{98}=\left(\dfrac{2}{3}\right)^2=\dfrac{4}{9}\)
c: \(\dfrac{3}{2}:\left|4x-\dfrac{1}{5}\right|=\dfrac{3}{4}\)
=>\(\left|4x-\dfrac{1}{5}\right|=\dfrac{3}{2}:\dfrac{3}{4}=\dfrac{3}{2}\cdot\dfrac{4}{3}=2\)
=>\(\left[{}\begin{matrix}4x-\dfrac{1}{5}=2\\4x-\dfrac{1}{5}=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=\dfrac{11}{5}\\4x=-\dfrac{9}{5}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{11}{20}\\x=-\dfrac{9}{20}\end{matrix}\right.\)
\(C=\left(\dfrac{2^2-1}{2^2}\right)\left(\dfrac{1-3^2}{3^2}\right)\left(\dfrac{4^2-1}{4^2}\right)...\left(\dfrac{1-99^2}{100^2}\right)\left(\dfrac{100^2-1}{99^2}\right)=\left(\dfrac{1.3}{2^2}\right)\left(\dfrac{-2.4}{3^2}\right)\left(\dfrac{3.5}{4^2}\right)...\left(\dfrac{-98.100}{99^2}\right)\left(\dfrac{99.101}{100^2}\right)=-\dfrac{101}{200}\)
a/ \(\dfrac{\left(1+2+.....+100\right)\left(\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{7}-\dfrac{1}{9}\right)\left(6,3.12-21.36\right)}{\dfrac{1}{2}+\dfrac{1}{3}+.......+\dfrac{1}{100}}\)
\(=\dfrac{\left(1+2+3+.....+100\right)\left(\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{7}-\dfrac{1}{9}\right).0}{\dfrac{1}{2}+\dfrac{1}{3}+.......+\dfrac{1}{100}}\)
\(=\dfrac{0}{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{100}}\)
\(=0\)
\(\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)...........\left(\dfrac{1}{100^2}-1\right)\)
\(=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{9}-1\right).......\left(\dfrac{1}{10000}-1\right)\)
\(=\dfrac{-3}{4}.\dfrac{-8}{9}...........\dfrac{-9999}{10000}\)
\(=\dfrac{\left(-1\right).3}{2^2}.\dfrac{\left(-2\right).4}{3^2}.................\dfrac{\left(-99\right).101}{100^2}\)
\(=\dfrac{\left(-1\right)\left(-2\right)........\left(-99\right)}{2.3.4.....100}.\dfrac{3.4...101}{2.3.4...100}\)
\(=\dfrac{-1}{100}.\dfrac{101}{2}\)
\(=\dfrac{-101}{200}\)