Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{8+2\sqrt{15}+\sqrt{21}+\sqrt{35}}{\sqrt{3}+\sqrt{5}+\sqrt{7}}\)
\(=\dfrac{\sqrt{5}\left(\sqrt{3}+\sqrt{5}+\sqrt{7}\right)+\sqrt{3}\left(\sqrt{3}+\sqrt{5}+\sqrt{7}\right)}{\sqrt{3}+\sqrt{5}+\sqrt{7}}\)
\(=\dfrac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{3}+\sqrt{5}+\sqrt{7}\right)}{\sqrt{3}+\sqrt{5}+\sqrt{7}}\)
\(=\sqrt{5}+\sqrt{3}\)
ban xem lai de sai ko nhe
a: \(=\dfrac{1}{2}\cdot2\sqrt{3}+3\sqrt{3}-5\sqrt{3}=-\sqrt{3}\)
b: \(=2-\sqrt{3}-\sqrt{3}-1=1\)
c: \(=18\sqrt{3}-10\sqrt{3}-\dfrac{1}{2}\cdot10\sqrt{3}=3\sqrt{3}\)
d: \(=\sqrt{10}+\sqrt{3}-\sqrt{5}+\sqrt{2}-2\sqrt{3}=\sqrt{10}+\sqrt{2}-\sqrt{3}-\sqrt{5}\)
a) Ta có: \(A=\frac{8+2\sqrt{15}+\sqrt{21}+\sqrt{35}}{\sqrt{3}+\sqrt{5}+\sqrt{7}}\)
\(=\frac{\left(\sqrt{3}+\sqrt{5}\right)^2+\sqrt{7}\cdot\left(\sqrt{3}+\sqrt{5}\right)}{\sqrt{3}+\sqrt{5}+\sqrt{7}}\)
\(=\frac{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}+\sqrt{7}\right)}{\sqrt{3}+\sqrt{5}+\sqrt{7}}\)
\(=\sqrt{3}+\sqrt{5}\)
b) Ta có: \(B=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{6}}\)
\(=\frac{\sqrt{2}-1}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}+\frac{\sqrt{4}-\sqrt{3}}{\left(\sqrt{4}+\sqrt{3}\right)\left(\sqrt{4}-\sqrt{3}\right)}+\frac{\sqrt{5}-\sqrt{4}}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}+\frac{\sqrt{6}-\sqrt{5}}{\left(\sqrt{6}+\sqrt{5}\right)\left(\sqrt{6}-\sqrt{5}\right)}\)
\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+2-\sqrt{3}+\sqrt{5}-2+\sqrt{6}-\sqrt{5}\)
\(=-1+\sqrt{6}\)
a: \(=\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{2}\sqrt{2}\right)\cdot5\sqrt{6}\)
\(=\left(2\sqrt{6}-4\sqrt{3}+\dfrac{9}{2}\sqrt{2}\right)\cdot5\sqrt{6}\)
\(=60-20\sqrt{18}+\dfrac{45}{2}\sqrt{12}\)
\(=60-60\sqrt{2}+45\sqrt{3}\)
b: \(=\dfrac{\sqrt{5}+\sqrt{2}+\sqrt{5}-\sqrt{2}+3}{3}\cdot\dfrac{1}{3+2\sqrt{2}}\)
\(=\dfrac{2\sqrt{5}+3}{3}\cdot\dfrac{1}{3+2\sqrt{2}}=\dfrac{2\sqrt{5}+3}{9+6\sqrt{2}}\)
1,
a,\(4\sqrt{\dfrac{9}{2}}+\sqrt{2}+\sqrt{\dfrac{1}{18}}=4\sqrt{\dfrac{18}{4}}+\sqrt{2}+\sqrt{\dfrac{1}{9.2}}=4\dfrac{\sqrt{18}}{2}+\sqrt{2}+\dfrac{1}{3}\sqrt{\dfrac{1}{2}}=2\sqrt{9.2}+\sqrt{2}+\dfrac{1}{3}\sqrt{\dfrac{2}{4}}=2.3\sqrt{2}+\sqrt{2}+\dfrac{\sqrt{2}}{6}=6\sqrt{2}+\sqrt{2}+\sqrt{2}\dfrac{1}{6}=\dfrac{43}{6}\sqrt{2}\) b,\(4\sqrt{20}-3\sqrt{125}+5\sqrt{45}-15\sqrt{\dfrac{1}{5}}=4\sqrt{4.5}-3\sqrt{25.5}+5\sqrt{9.5}-15\dfrac{\sqrt{5}}{5}=4.2\sqrt{5}-3.5\sqrt{5}+5.3\sqrt{5}-3\sqrt{5}=8\sqrt{5}-15\sqrt{5}+15\sqrt{5}-3\sqrt{5}=5\sqrt{5}\)
*) Giải phương trình :
\(\sqrt{4x-8}+5\sqrt{x-2}-\sqrt{9x-18}=20\) ( ĐKXĐ : x \(\ge\) 2 )
\(\Leftrightarrow\sqrt{4\left(x-2\right)}+5\sqrt{x-2}-\sqrt{9\left(x-2\right)}=20\)
\(\Leftrightarrow2\sqrt{x-2}+5\sqrt{x-2}-3\sqrt{x-2}=20\)
\(\Leftrightarrow4\sqrt{x-2}=20\)
\(\Leftrightarrow\sqrt{x-2}=5\)
\(\Leftrightarrow x-2=25\)
\(\Leftrightarrow x=27\) ( thỏa mãn điều kiện )
Vậy phương trình có nghiệm x = 27 .
1 )A =\(\left(\sqrt{7-\sqrt{21}+4\sqrt{5}}\right)^2=7-\sqrt{21}+4\sqrt{5}\)
B =\(\left(\sqrt{5}-1\right)^2=6-2\sqrt{5}\)
\(\Rightarrow A-B=1-\sqrt{21}+6\sqrt{5}\)
=\(\left(1+\sqrt{180}\right)-\sqrt{21}>0.\)
\(\Rightarrow A>B\Rightarrow\sqrt{7-\sqrt{21}+4\sqrt{5}}>\sqrt{5}-1\)
2 ) C =\(\left(\sqrt{5}+\sqrt{10}+1\right)^2\)
=\(5+10+1+10\sqrt{2}+2\sqrt{5}+2\sqrt{10}\)
=\(26+10\sqrt{2}+2\sqrt{5}+2\sqrt{10}>26+10>35=\left(35\right)^2\)
\(V\text{ậ}y\sqrt{5}+\sqrt{10}+1>\sqrt{35}\)
3 )\(\left(\dfrac{15-2\sqrt{10}}{3}\right)^2=\dfrac{225-60\sqrt{10}+40}{9}\)
\(=\dfrac{265-60\sqrt{10}}{9}\)
\(=\dfrac{265}{9}-\dfrac{20\sqrt{10}}{3}< 15.\)
Vậy nên \(\dfrac{15-2\sqrt{10}}{3}< \sqrt{15}.\)
♡
\(\dfrac{2}{1-\sqrt{2}}-\dfrac{2}{1+\sqrt{2}}\)
\(=\dfrac{2\left(1+\sqrt{2}\right)-2\left(1-\sqrt{2}\right)}{\left(1-\sqrt{2}\right)\left(1+\sqrt{2}\right)}\)
\(=\dfrac{2+2\sqrt{2}-2+2\sqrt{2}}{1-2}=-4\sqrt{2}\)
♡
\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right)\left(\sqrt{5}-\sqrt{2}\right)\)
\(=\left[-\dfrac{\sqrt{2}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}-\sqrt{5}\right]\left(\sqrt{5}-\sqrt{2}\right)\)
\(=-\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)\)
\(=-3\)
♡
\(\dfrac{2}{7+4\sqrt{3}}+\dfrac{2}{7-4\sqrt{3}}\)
\(=\dfrac{2\left(7-4\sqrt{3}\right)+2\left(7+4\sqrt{3}\right)}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)
\(=\dfrac{14-8\sqrt{3}+14+8\sqrt{3}}{49-48}\)
= 28
♡
\(\dfrac{2}{\sqrt{5}+1}-\sqrt{\dfrac{2}{3-\sqrt{5}}}\)
\(=\dfrac{2}{\sqrt{5}+1}-\sqrt{\dfrac{4}{6-2\sqrt{5}}}\)
\(=\dfrac{2}{\sqrt{5}+1}-\dfrac{2}{\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(=\dfrac{2\left(\sqrt{5}-1\right)-2\left(\sqrt{5}+1\right)}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}\)
\(=\dfrac{2\sqrt{5}-2-2\sqrt{5}-2}{5-1}\)
= - 1
♡
\(\dfrac{4}{1-\sqrt{3}}-\dfrac{\sqrt{15}+\sqrt{3}}{1+\sqrt{5}}\)
\(=\dfrac{4\left(1+\sqrt{3}\right)}{1-3}-\dfrac{\sqrt{3}\left(\sqrt{5}+1\right)}{\left(\sqrt{5}+1\right)}\)
\(=-2-2\sqrt{3}-\sqrt{3}=-2-3\sqrt{3}\)
♡
\(\dfrac{\sqrt{2}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}\)
\(=\dfrac{2}{4+\sqrt{6+2\sqrt{5}}}\) (nhân [căn 2] vào cả tử và mẫu)
\(=\dfrac{2}{4+\sqrt{\left(\sqrt{5}+1\right)^2}}\)
\(=\dfrac{2}{5+\sqrt{5}}=\dfrac{2\left(5-\sqrt{5}\right)}{25-5}=\dfrac{5-\sqrt{5}}{10}\)
Ta có: \(\dfrac{8+2\sqrt{15}+\sqrt{21}+\sqrt{35}}{\sqrt{3}+\sqrt{5}+\sqrt{7}}\)
\(=\dfrac{\left(\sqrt{3}+\sqrt{5}\right)^2+\sqrt{7}\left(\sqrt{3}+\sqrt{5}\right)}{\sqrt{3}+\sqrt{5}+\sqrt{7}}\)
\(=1+\sqrt{3}+\sqrt{5}\)