Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C = 1/3 + -3/4 + 3/5 + 1/57 + -1/36 + 1/15 + -2/9
C = ( 1/3 + 1/57 ) + ( -3/4 + -1/36 ) + ( 3/5 + 1/15 ) + -2/9
C = ( 19/57 + 1/57 ) + ( -27/36 + -1/36 ) + ( 9/15 + 1/15 ) + -2/9
C = 20/57 + -28/36 + 10/15 + -2/9
C = 20/57 + -7/9 + 2/3 + -2/9
C = ( 20/57 + 2/3 ) + ( -7/9 + -2/9 )
C = 58/57 + -1
C = 1/57
D = 1/2 + -1/5 + -5/7 + 1/6 + -3/35 + 1/3 + 1/41
D = ( 1/2 + 1/3 + 1/6 ) + ( -1/5 + -5/7 +-3/35 ) + 1/41
D = ( 3/6 + 2/6 + 1/6 ) + ( -7/35 + -25/35 + -3/35 ) + 1/41
D = 1 + -1 + 1/41
D = 1/41
E = -1/2 + 3/5 + -1/9 + 1/127 + -7/18 + 4/35 + 2/7
E = ( -1/2 + -1/9 + -7/18 ) + ( 3/5 + 4/35 ) + 1/127 + 2/7
E = ( -9/18 + -2/18 + -7/18 ) + ( 21/35 + 4/35 ) + 1/127 + 2/7
E = -1 + 5/7 + 1/257 + 2/7
E = -1 + ( 5/7 + 2/7 ) + 1/127
E = -1 + 1 + 1/127
E = 1/127
\(2A=1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+.....-\frac{1}{2^{99}}\Rightarrow2A+A=3A=\left(1-\frac{1}{2}+\frac{1}{2^2}-....-\frac{1}{2^{99}}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+......-\frac{1}{2^{100}}\right)=1-\frac{1}{2^{100}}=\frac{2^{100}-1}{2^{100}}\Rightarrow A=\frac{2^{100}-1}{3.2^{100}}\)
\(2,4B=2+\frac{1}{2}+\frac{1}{2^3}+.....+\frac{1}{2^{97}}\Rightarrow4B-B=3B=\left(2+\frac{1}{2}+....+\frac{1}{2^{97}}\right)-\left(\frac{1}{2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\right)=2-\frac{1}{2^{99}}=\frac{2^{100}-1}{2^{99}}\Rightarrow B=\frac{2^{100}-1}{3.2^{99}}\)
\(3,C=\frac{1}{2}-\frac{1}{2^4}+\frac{1}{2^7}-....-\frac{1}{2^{58}}\Rightarrow8C=4-\frac{1}{2}+\frac{1}{2^4}-.....-\frac{1}{2^{55}}\Rightarrow8C+C=9C=\left(4-\frac{1}{2}+\frac{1}{2^4}-....-\frac{1}{2^{55}}\right)+\left(\frac{1}{2}-\frac{1}{2^4}+\frac{1}{2^7}-....-\frac{1}{2^{58}}\right)=4-\frac{1}{2^{58}}=\frac{2^{60}-1}{2^{58}}\Rightarrow C=\frac{2^{60}-1}{9.2^{58}}\)
1) Đặt \(D=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\)
\(\Rightarrow3D=1+\frac{1}{3}+...+\frac{1}{3^{99}}\)
\(\Rightarrow3D-D=\left(1+\frac{1}{3}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)\)
\(\Leftrightarrow2D=1-\frac{1}{3^{100}}\)
\(\Leftrightarrow D=\frac{3^{100}-1}{2\cdot3^{100}}\)
Vậy \(D=\frac{3^{100}-1}{2\cdot3^{100}}\)
2) Ta có: \(\frac{49}{58}\cdot\frac{2^5}{4^2}-\frac{7^2}{-58}\cdot3\)
\(=\frac{49}{58}\cdot2-\frac{49}{58}\cdot3\)
\(=-1\cdot\frac{49}{58}\)
\(=-\frac{49}{58}\)
c.\(\frac{\left(13\frac{1}{4}-2\frac{5}{27}-10\frac{5}{6}\right).230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{7}+\frac{10}{3}\right):\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
\(\frac{\frac{25}{108}.\frac{5751}{25}+\frac{187}{4}}{\frac{100}{21}:-\frac{41}{21}}\)
\(\frac{\frac{213}{4}+\frac{187}{4}}{-\frac{100}{41}}\)
\(\frac{100}{-\frac{100}{41}}=-41\)
a. \(\frac{4}{9}:-\frac{1}{7}+6\frac{5}{9}:-\frac{1}{7}\)
\(\left(\frac{4}{9}+6\frac{5}{9}\right):-\frac{1}{7}\)
\(7:-\frac{1}{7}=-49\)
nhân 2 vế cho \(\frac{1}{2^3}\)