K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2018

a, \(M=\frac{3}{2}\cdot\frac{4}{3}\cdot\cdot\cdot\cdot\frac{2018}{2017}\cdot\frac{2019}{2018}=\frac{3.4...2019}{2.3...2018}=\frac{2019}{2}\)

b, c cùng 1 câu phải k

ta có: \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{2017}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(=1+\frac{1}{2}+...+\frac{1}{2018}-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)

\(=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2018}=B\)

\(\Rightarrow\frac{A}{B}=1\Rightarrow\left(\frac{A}{B}\right)^{2018}=1^{2018}=1\)

15 tháng 7 2018

A,\(M=\frac{3}{2}\cdot\frac{4}{3}....\frac{2018}{2017}\cdot\frac{2019}{2018}=\frac{4\cdot3...2019}{2\cdot3...2018}=\frac{2019}{2}\)

NHA

HỌC TỐT

A= E387E4837

B = 883433

C = UỲUWFHQWURY48E3947

6 tháng 2 2020

\(a,\left(\frac{6^3-10.5^3}{6^2.3^3-15^2.5^2}.|x-2|\right):10=\left(1-\frac{1}{2}\right)....\left(1-\frac{1}{10}\right)\)

\(=\frac{1.2.3.4...9}{1.2.....10}=\frac{1}{10}\Leftrightarrow\frac{6^3-10.5^3}{6^2.3^3-15^2.5^2}.|x-2|=1\)

\(\Leftrightarrow\frac{6^2.6-2.5^4}{6^2.3^2-3^2.5^4}.|x-2|=1\Leftrightarrow|x-2|.\frac{2}{3}=1\Leftrightarrow|x-2|=\frac{3}{2}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{7}{2}\end{cases}}\)

6 tháng 2 2020

\(\left(\frac{6^3-10,5^3}{6^2.3^3-15^2.5^2}.\left|x-2\right|\right):10=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).....\left(1-\frac{1}{9}\right).\left(1-\frac{1}{10}\right)\)

\(=\frac{1.2.3.4...9}{1.2.....10}=\frac{1}{10}\)

\(\Leftrightarrow\frac{6^3-10,5^3}{6^2.3^3-15^2.5^2}.\left|x-2\right|=1\)

\(\Leftrightarrow\frac{6^2.6-2.5^4}{6^2.3^2-3^2.5^4}.\left|x-2\right|=1\)

\(\Leftrightarrow\left|x-2\right|.\frac{2}{3}=1\Leftrightarrow\left|x-2\right|=\frac{3}{2}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{7}{2}\end{cases}}\)

15 tháng 12 2018

\(P=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right).....\left(\frac{1}{2017}-1\right)\left(\frac{1}{2018}-1\right)\)

\(P=\left(\frac{-1}{2}\right)\left(\frac{-2}{3}\right)\left(\frac{-3}{4}\right).....\left(\frac{-2016}{2017}\right)\left(\frac{-2017}{2018}\right)\)

\(P=\frac{\left(-1\right)\left(-2\right)\left(-3\right)\left(-4\right)....\left(-2017\right)}{2.3.4......2017.2018}\)

\(P=\frac{\left(-1\right)\left[\left(-2\right)\left(-3\right)\right]\left[\left(-4\right)\left(-5\right)\right]...\left[\left(-2016\right)\left(-2017\right)\right]}{\left[2.3\right]\left[4.5\right]....\left[2016.2017\right].2018}\)

\(P=\frac{\left(-1\right)\left[2.3\right]\left[4.5\right]....\left[2016.2017\right]}{\left[2.3\right]\left[4.5\right].....\left[2016.2017\right].2018}=\frac{-1}{2018}\)

1 tháng 2 2020

phép toán là trừ hay cộng hay nhân ,chia vậy b

1 tháng 2 2020

ko ghi đề vui

=\(\left(\frac{1}{1+2}\right).\left(\frac{1}{1+2+3}\right).....\left(\frac{1}{1+2+...+2018}\right)\)

=\(\frac{\left(2.\frac{1}{1+2}\right).\left(2.\frac{1}{1+2+3}\right).....\left(2.\frac{1}{1+2+3+...+2018}\right)}{2}\)

=[\(\left(\frac{2}{2.3}\right).\left(\frac{2}{3.4}\right).....\left(\frac{2}{2018.2019}\right)\)]:2

=\(\frac{2^{1008}}{2.3.3.4.....2018.2019}\)

Đoạn này thì ko lm đc nx hehe