\(B=7^7-7^8+7^9-7^{10}+...+7^{2015}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2016

B = 7^7 - 7^8 + 7^9 -7^10 +....+7^2015

=> 7B = 7^8 -7^9 +....+ 7^2014-7^2015 + 7^2016

=> 8B = 7^7 + 7^2016 

=> B = (7^7 + 7^2016)/8

29 tháng 9 2016

B=77-78+79-710+...+72014-72015

=>7B=78-79+710-711+...+72015-72016

=>B+7B=(77-78+79-710+...+72014-72015)+(78-79+710-711+...+72015-72016)

=>8B=77+72016

=>B=\(\frac{7^7+7^{2016}}{8}\)

\(a,7^6+7^5-7^4⋮55\)

\(7^4\left(7^2+7-1\right)⋮55\)

\(7^4\times55⋮55\left(dpcm\right)\)

\(8^{12}-2^{33}-2^{30}\)

\(=8^{12}-\left(2^3\right)^{11}-\left(2^3\right)^{10}\)

\(=8^{12}-8^{11}-8^{10}\)

\(=8^{10}\left(8^2-8-1\right)\)

\(=8^{10}\times55⋮55\left(dpcm\right)\)

6 tháng 7 2016

a) 106 - 57

= 26 . 56 - 57

= 56 . (26 - 5)

= 56 . (64 - 5)

= 56 . 59 chia hết cho 59

=> đpcm

b) 817 - 279 - 913

= (34)7 - (33)9 - (32)13

= 328 - 327 - 326

= 326 .(32 - 3 - 1)

= 326 . (9 - 3 - 1)

= 324 . 32 . 5

= 324 . 9 . 5

= 324 . 45 chia hết cho 45

=> đpcm

c) 87 - 218

= (23)7 - 218

= 221 - 218

= 218 . (23 - 1)

= 218 (8 - 1)

= 217 . 2 . 7

= 217 . 14 chia hết cho 14

=> đpcm

d) 109 + 108 + 107

= 107 . (102 + 10 + 1)

= 57 . 27 . (100 + 10 + 1)

= 57 . 26 . 2 . 111

= 57 . 26 . 222 chia hết cho 222

=> đpcm

a) 7^6 + 7^5 - 7^4

= 7^4.(7^2 + 7 - 1)

= 7^4.(49 + 7 - 1)

= 7^4.55

= 7^4.5.11 ⋮11(đpcm)

b) 10^9 + 10^8 + 10^7

= 10^7.(10^2 + 10 + 1)

= 5^7.2^7.(100 + 10 + 1)

= 5^7.2^6.2.111

= 5^7.2^6.222 ⋮222(đpcm)

như này nhé, tất cả các số kia đều có chung 7^4 ( vì 7^6 = 7^4 . 7^2, 7^5=7^4+7)

=> Có biểu thức : 7^4 .( 7^2 + 7 -1)

Phần dưới tương tự

Chúc bạn hok tốt!!!

8 tháng 8 2018

\(7^6+7^5-7^4\)

\(=7^4\cdot7^2+7^5\cdot7-7^4\)

\(=7^4\cdot\left(7^2+7-1\right)\)

\(=7^4\cdot55\)

\(=7^4\cdot5\cdot11⋮11\left(đpcm\right)\) 

1 tháng 9 2018

\(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)\)

\(=7^4.55⋮11\)

\(=>7^6+7^5-7^4⋮11\)

31 tháng 7 2017

a) 109+108+107= 107.(102+101)

17 tháng 11 2017

a) \(7^6+7^5-7^4\) = \(7^4.\left(7^2+7-1\right)\) =\(7^4.55\) (55 chia hết cho 11) Vậy \(7^6+7^5-7^4⋮11\) b) \(10^9+10^8+10^7\) = \(10^7.\left(10^2+10+1\right)\) = \(10^7.111\) =\(10^6.10.111\) =\(10^6.5.2.111\) =\(10^6.5.222⋮222\) Vậy \(10^9+10^8+10^7⋮222\)

5 tháng 4 2020

a) A = \(\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-\frac{1}{7^8}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)

Nhân \(\frac{1}{7^2}\)với A .Ta được : 

A .\(\frac{1}{7^2}\)\(\frac{1}{7^4}-\frac{1}{7^6}+\frac{1}{7^8}-...-\frac{1}{7^{98}}+\frac{1}{7^{100}}-\frac{1}{7^{102}}\)

Ta có : \(\frac{1}{7^2}.A+A=\frac{1}{49}-\frac{1}{7^{102}}\)

\(\Rightarrow\frac{50}{49}.A=\frac{1}{49}-\frac{1}{7^{102}}\)

\(\Rightarrow A.\left(\frac{1}{49}-\frac{1}{7^{102}}\right).\frac{49}{50}< \frac{1}{50}\left(đpcm\right)\)

b)Giả sử a>a2 > a3 ...> a2015 nên a1 > a2015 

Theo đề ra ta có : \(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2015}}< \frac{1}{2016}+\frac{1}{2015}+...+1=A\)

A< \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{8}+\left(\frac{1}{8}+\frac{1}{8}+...+\frac{1}{8}\right)\)có 2007 số \(\frac{1}{8}\)

Mà \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{8}+\left(\frac{1}{8}+\frac{1}{8}+...+\frac{1}{8}\right)< 1+1+...+\frac{2018}{8}\)

Giả sử trong 2015 số nguyên dương đã cho không có số nào bằng nhau .

Và a1 < a2 < a3 < ... < a2015 

Ta có : \(\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+...+\frac{1}{a_{2015}}\le1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\)

\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2011}}< 1+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}=1+1007=1008\)

=> Giả sử là sai => ít nhất 2 trong 2015 số nguyên dương đã cho bằng nhau ( đpcm ) 

17 tháng 9 2020

a) \(4\frac{5}{9}:\left(-\frac{5}{7}\right)+\frac{49}{9}:\left(-\frac{5}{7}\right)=\frac{41}{9}:\left(-\frac{5}{7}\right)+\frac{49}{9}:\left(-\frac{5}{7}\right)\)

\(=\frac{41}{9}\cdot\left(-\frac{7}{5}\right)+\frac{49}{9}\cdot\left(-\frac{7}{5}\right)=\left(\frac{41}{9}+\frac{49}{9}\right)\cdot\left(-\frac{7}{5}\right)=10\cdot\left(-\frac{7}{5}\right)=-14\)

b) \(\left(\frac{-3}{5}+\frac{4}{9}\right):\frac{7}{11}+\left(\frac{-2}{5}+\frac{5}{9}\right):\frac{7}{11}\)

\(=\left(\frac{-3}{5}+\frac{4}{9}+\frac{-2}{5}+\frac{5}{9}\right):\frac{7}{11}\)

\(=\left(\frac{-3}{5}+\frac{-2}{5}+\frac{4}{9}+\frac{5}{9}\right):\frac{7}{11}\)

\(=\left(-1+1\right):\frac{7}{11}=0\cdot\frac{11}{7}=0\)

c) \(\left(\frac{3}{4}\right)^4\cdot\left(\frac{8}{9}\right)^2=\left(\frac{3}{4}\right)^2\cdot\left(\frac{3}{4}\right)^2\cdot\left(\frac{8}{9}\right)^2=\left(\frac{3}{4}\cdot\frac{3}{4}\cdot\frac{8}{9}\right)^2\)

\(=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)

d) \(\left(-\frac{3}{5}\right)^6\cdot\left(-\frac{5}{3}\right)^5=\left(-\frac{3}{5}\right)^5\cdot\left(-\frac{3}{5}\right)\cdot\left(-\frac{5}{3}\right)^5=\left[\left(-\frac{3}{5}\right)\cdot\left(-\frac{5}{3}\right)\right]^5\cdot\left(-\frac{3}{5}\right)\)

\(=1^5\cdot\left(-\frac{3}{5}\right)=1\cdot\left(-\frac{3}{5}\right)=-\frac{3}{5}\)

e) \(\frac{8^{14}}{4^4\cdot64^5}=\frac{\left(2^3\right)^{14}}{\left(2^2\right)^4\cdot\left(2^6\right)^5}=\frac{2^{42}}{2^8\cdot2^{30}}=\frac{2^{42}}{2^{38}}=2^4=16\)

f) \(\frac{9^{10}\cdot27^7}{81^7\cdot3^{15}}=\frac{\left(3^2\right)^{10}\cdot\left(3^3\right)^7}{\left(3^4\right)^7\cdot3^{15}}=\frac{3^{20}\cdot3^{21}}{3^{28}\cdot3^{15}}=\frac{3^{41}}{3^{43}}=3^{-2}=\frac{1}{3^2}=\frac{1}{9}\)