Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}+\frac{1}{2^{100}}\)
\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\left(\frac{1}{2^{100}}+\frac{1}{2^{100}}\right)\)
\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{99}}\)
cứ làm như vậy ta được :
\(=1+1=2\)
2. Ta có :
\(\frac{2008+2009}{2009+2010}=\frac{2008}{2009+2010}+\frac{2009}{2009+2010}\)
vì \(\frac{2008}{2009}>\frac{2008}{2009+2010}\); \(\frac{2009}{2010}>\frac{2009}{2009+2010}\)
\(\Rightarrow\frac{2008}{2009}+\frac{2009}{2010}>\frac{2008+2009}{2009+2010}\)
a) Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\) ; \(\frac{1}{3^2}< \frac{1}{2.3}\) ; \(\frac{1}{4^2}< \frac{1}{3.4}\) ; ... ; \(\frac{1}{2010^2}< \frac{1}{2009.2010}\)
=> \(Vt< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(=1-\frac{1}{2010}< 1\)
Gọi a là tử số còn b là mẫu số
a=1+2+2^2+...+2^2008
2a=2+2^2+2^3+...+2^2009
2a-a=(2+2^2+...+2^2009)-(1+2+2^2+....+2^2008)
a=2^2009-1
Suy ra,ta có:
B=2^2009-1/1-2^2009=-1
cho tử là A
\(A=1+2+2^2+2^3+...+2^{2008}\)
\(2A=2.\left(1+2+2^2+2^3+...+2^{2008}\right)\)
\(2A=2.1+2.2+2.2^2+2.2^3+...+2.2^{2008}\)
\(2A=2+2^2+2^3+2^4+...+2^{2009}\)
\(A=2A-A=\left(2+2^2+2^3+2^4+...+2^{2009}\right)-\left(1+2+2^2+2^3+...+2^{2008}\right)\)
=> \(A=2^{2009}-1\)
- thay \(A\)vào tử thành :
<=> \(\frac{2^{2009}-1}{1-2^{2009}}\)=\(-\frac{\left(1-2^{2009}\right)}{1-2^{2009}}\)= \(-1\)
vậy kết quả là \(-1\)
đặt tử số là A
ta có : A = 1 + 2 + 22 + 23 + ... + 22008
2A = 2 + 22 + 23 + 24 + ... + 22009
2A - A = 22009 - 1
A = 22009 - 1
=> \(\frac{2^{2009}-1}{1-2^{2009}}\) = -1
có : Q = [ 2 + 2^2 ] + [ 2^3 +2^4] + ... + [2^9 + 2^10]
Q = 2 [1+2] +2^3[1 +2]+ ...+ 2^9 [1+2]
Q = 2 . 3+2^3 .3 +... + 2^9 .3
Q = 3. [ 2 + 2^3 +... + 2^9]
Vậy Q chia hết cho 3
help me
but i don't know