Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}+\frac{1}{2^{100}}\)
\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\left(\frac{1}{2^{100}}+\frac{1}{2^{100}}\right)\)
\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{99}}\)
cứ làm như vậy ta được :
\(=1+1=2\)
2. Ta có :
\(\frac{2008+2009}{2009+2010}=\frac{2008}{2009+2010}+\frac{2009}{2009+2010}\)
vì \(\frac{2008}{2009}>\frac{2008}{2009+2010}\); \(\frac{2009}{2010}>\frac{2009}{2009+2010}\)
\(\Rightarrow\frac{2008}{2009}+\frac{2009}{2010}>\frac{2008+2009}{2009+2010}\)
ta có: \(A=\dfrac{2008^{2009}+2}{2008^{2009}-1}=\dfrac{2008^{2009}-1+3}{2008^{2009}-1}=1+\dfrac{3}{2008^{2009}-1}\)
B=\(\dfrac{2008^{2009}}{2008^{2009}-3}=\dfrac{2008^{2009}-3+3}{2008^{2009}-3}=1+\dfrac{3}{2008^{2009}-3}\)
ta thấy: \(1+\dfrac{3}{2008^{2009}-1}\)<\(1+\dfrac{3}{2008^{2009}-3}\)
vậy A<B
Gọi \(1+2+2^2+2^3+...+2^{2008}\) là D.
Ta có:
\(D=1+2+2^2+2^3+...+2^{2008}\)
\(2D=2+2^2+2^3+2^4...+2^{2009}\)
\(2D-D=\left(2+2^2+2^3+2^4...+2^{2009}\right)-\left(1+2+2^2+2^3+...+2^{2008}\right)\)\(D=2^{2009}-1\)
\(B=\dfrac{2^{2009}-1}{1-2^{2009}}\\ =\dfrac{\left(-1\right)\cdot\left(1-2^{2009}\right)}{1-2^{2009}}\\ =-1\)
2, ta thấy:
\(\dfrac{2008}{2009}< \dfrac{2008}{2009+2010}\left(1\right)\)
\(\dfrac{2009}{2010}< \dfrac{2009}{2009+20010}\left(2\right)\)
từ (1) và (2) cộng vế với vế ta đc :\(\dfrac{2008}{2009}+\dfrac{2009}{20010}< \dfrac{2008}{2009+2010}+\dfrac{2009}{2009+2010}=\dfrac{2008+2009}{2009+2010}\)
a)\(\frac{5}{2}-3\left(\frac{1}{3}-x\right)=\frac{1}{4}-7x\)
\(\Leftrightarrow\frac{5}{2}-1+x=\frac{1}{4}-7x\)
\(\Leftrightarrow8x=-\frac{5}{4}\)
\(\Leftrightarrow x=-\frac{5}{32}\)
c)\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2001}{2003}\)
\(\Leftrightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2001}{2003}\)
\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2003}\)
\(\Leftrightarrow x+1=2003\)
\(\Leftrightarrow x=2002\)
Lời giải:
Xét tử số:
\(X=1+2+2^2+2^3+....+2^{2008}\)
\(\Rightarrow 2X=2+2^2+2^3+...+2^{2008}+2^{2009}\)
Lấy vế sau trừ đi vế trước:
\(2X-X=(2+2^2+2^3+...+2^{2009})-(1+2+2^2+2^3+...+2^{2008})\)
\(X=2^{2009}-1\)
Do đó:
\(B=\frac{1+2+2^3+...+2^{2008}}{1-2^{2009}}=\frac{2^{2009}-1}{1-2^{2009}}=-1\)
Có \(B=\dfrac{1+2+2^2+2^3+...........+2^{2008}}{1-2^{2009}}\)
Ta xét tử số:
Đặt A = \(1+2+2^2+2^3+...........+2^{2008}\)
\(2A=2+2^2+2^3+2^4+..........+2^{2009}\)
\(2A-A=\left(2+2^2+2^3+2^4+......+2^{2009}\right)-\left(1+2+2^2+2^3+.........+2^{2008}\right)\)
A = \(2^{2009}-1\)
Thay vào B ta lại có:
\(\dfrac{2^{2009}-1}{1-2^{2009}}=\dfrac{-1}{1}=-1\)
Vậy B = -1
Ta có :
\(A=\dfrac{\dfrac{2008}{1}+\dfrac{2007}{2}+....................+\dfrac{2}{2007}+\dfrac{1}{2008}}{\dfrac{1}{2}+\dfrac{1}{3}+....................+\dfrac{1}{2008}+\dfrac{1}{2009}}\)
\(\Rightarrow A=\dfrac{\left(\dfrac{2007}{2}+1\right)+.....+\left(\dfrac{2}{2007}+1\right)+\left(\dfrac{1}{2008}+1\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+...............+\dfrac{1}{2008}+\dfrac{1}{2009}}\)
\(\Rightarrow A=\dfrac{\dfrac{2009}{2}+...................+\dfrac{2009}{2007}+\dfrac{2009}{2008}+\dfrac{2009}{2009}}{\dfrac{1}{2}+\dfrac{1}{3}+.....................+\dfrac{1}{2008}+\dfrac{1}{2009}}\)
\(\Rightarrow A=\dfrac{2009\left(\dfrac{1}{2}+..........................+\dfrac{1}{2008}+\dfrac{1}{2009}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+............................+\dfrac{1}{2008}+\dfrac{1}{2009}}\)
\(\Rightarrow A=2009\)
Đặt \(A=1+2+2^2+...+2^{2008}\)
\(2A=2+2^2+2^3+...+2^{2009}\)
\(2A-A=2+2^2+2^3+...+2^{2009}-\left(1+2+2^2+...+2^{2008}\right)\)
\(A=2^{2009}-1\)
mà \(B=\dfrac{A}{1-2^{2009}}=-1\)
Giả sử ta Đặt A= \(1+2+2^2+2^3+...+2^{2008}\)
Ta có 2A = \(2+2^2+2^3+...+2^{2009}\)
Lấy 2A - A = \(2+2^2+2^3+...+2^{2009}-\left(1+2+2^2+...+2^{2008}\right)\)
\(\Leftrightarrow A=2^{2009}-1\)
Ta lại có \(B=\dfrac{A}{1-2^{2009}}\)
Thay A vào B ta có \(B=\dfrac{2^{2009}-1}{1-2^{2009}}=\dfrac{-\left(1-2^{2009}\right)}{1-2^{2009}}=-1\)
Đặt \(C=1+2+2^2+...+2^{2008}\)
\(\Leftrightarrow2C=2+2^2+...+2^{2009}\)
hay \(C=2^{2009}-1\)
\(B=\dfrac{C}{1-2^{2009}}=-1\)
ta có:
2B = 2 + 2^2 +...+ 2^2009 / 1 - 2^2009
2B - B = (2 + 2^2 +...+ 2^2009)-(1 + 2 +...+ 2^2008) / 1 - 2^2009
B = 2^2009 - 1 / 1 - 2^2009
B = -(2^2009 - 1) / 1 - 2^2009 * (-1)
B = 1 * (-1)
B = -1