Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{5}{1.6}\)+\(\dfrac{5}{6.11}\)+\(\dfrac{5}{11.16}\)+\(\dfrac{5}{16.21}\)+...+\(\dfrac{5}{101.106}\)
A = \(\dfrac{1}{1}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{101}-\dfrac{1}{106}\)
A = \(\dfrac{1}{1}\) - \(\dfrac{1}{106}\)
A = \(\dfrac{105}{106}\)
B = \(\dfrac{3}{1.4}\) +\(\dfrac{3}{4.7}\)+\(\dfrac{3}{7.10}\)+...+\(\dfrac{3}{97.100}\)
B = \(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\)
B = \(\dfrac{1}{1}\) - \(\dfrac{1}{100}\)
B = \(\dfrac{99}{100}\)
C = \(\dfrac{1}{2.7}+\dfrac{1}{7.12}\) + \(\dfrac{1}{12.17}\)+...+ \(\dfrac{1}{97.102}\)
C= \(\dfrac{1}{5}\) \(\times\)( \(\dfrac{5}{2.7}+\dfrac{5}{7.12}+\dfrac{5}{12.17}+...+\dfrac{5}{97.102}\))
C = \(\dfrac{1}{5}\)\(\times\)(\(\dfrac{1}{2}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{12}\) + \(\dfrac{1}{12}\) - \(\dfrac{1}{17}\)+...+ \(\dfrac{1}{97}\) - \(\dfrac{1}{102}\))
C = \(\dfrac{1}{5}\) \(\times\)( \(\dfrac{1}{2}\) - \(\dfrac{1}{102}\))
C = \(\dfrac{1}{5}\) \(\times\) \(\dfrac{25}{51}\)
C = \(\dfrac{5}{51}\)
D = \(\dfrac{1}{2}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{42}\) + \(\dfrac{1}{56}\) + \(\dfrac{1}{72}\)
D = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\)+\(\dfrac{1}{7.8}\)+ \(\dfrac{1}{8.9}\)
D = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)+\(\dfrac{1}{6}\) - \(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-\(\dfrac{1}{8}\)+\(\dfrac{1}{8}\)-\(\dfrac{1}{9}\)
D = \(\dfrac{1}{1}\) - \(\dfrac{1}{9}\)
D = \(\dfrac{8}{9}\)
E = \(\dfrac{3}{2.4}\)+\(\dfrac{3}{4.6}\)+\(\dfrac{3}{6.8}\)+...+\(\dfrac{3}{98.100}\)
E = \(\dfrac{3}{2}\) \(\times\) ( \(\dfrac{2}{2.4}\) + \(\dfrac{2}{4.6}\)+ \(\dfrac{2}{6.8}\)+...+\(\dfrac{2}{98.100}\))
E = \(\dfrac{3}{2}\)\(\times\)( \(\dfrac{1}{2}\) - \(\dfrac{1}{4}\)+ \(\dfrac{1}{4}\) - \(\dfrac{1}{6}\)+\(\dfrac{1}{6}\)-\(\dfrac{1}{8}\)+...+\(\dfrac{1}{98}\) - \(\dfrac{1}{100}\))
E = \(\dfrac{3}{2}\) \(\times\) ( \(\dfrac{1}{2}\) - \(\dfrac{1}{100}\))
E = \(\dfrac{3}{2}\) \(\times\) \(\dfrac{49}{100}\)
E = \(\dfrac{147}{200}\)
28,37-23,18-16,82+71,63
=(28,37+71,63)-(23,18+16,82)
=60
B=1/1x6 + 1/6x11 + 1/16x21 + 1/21x26 + 1/26x31
=1-1/6+1/6-1/11+1/11-....-1/31
=1-1/31=30/31
a) A = \(\left(28,37+71,63\right)-\left(23,18+16,82\right)\)
= 100 - 40
= 60
b) \(B=\dfrac{1}{1.6}+\dfrac{1}{6.11}+\dfrac{1}{11.16}+\dfrac{1}{16.21}+\dfrac{1}{21.26}+\dfrac{1}{26.31}\)
= \(\dfrac{1}{5}\left(\dfrac{5}{1.6}+\dfrac{5}{6.11}+...+\dfrac{5}{26.31}\right)\)
= \(\dfrac{1}{5}\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{26}-\dfrac{1}{31}\right)\)
= \(\dfrac{1}{5}\left(1-\dfrac{1}{31}\right)=\dfrac{1}{5}.\dfrac{30}{31}=\dfrac{6}{31}\)
\(\frac{2}{1x6}+\frac{2}{6x11}+\frac{2}{11x16}+\frac{2}{16x21}+\frac{2}{21x26}\)
= \(\frac{2}{6}+\frac{2}{66}+\frac{2}{176}+\frac{2}{336}+\frac{2}{546}\)
= \(\frac{1}{3}+\frac{1}{33}+\frac{1}{88}+\frac{1}{168}+\frac{1}{273}\)
=\(\frac{5}{13}\)
Mình tự nghĩ đấy .
Chúc bạn học tốt!
A = \(\dfrac{25}{1\times6}\) + \(\dfrac{25}{6\times11}\) + \(\dfrac{25}{11\times16}\)+\(\dfrac{25}{16\times21}\)+ \(\dfrac{25}{26\times31}\)
A = 5 \(\times\) ( \(\dfrac{5}{1\times6}\)+\(\dfrac{5}{6\times11}\)+\(\dfrac{5}{11\times16}\)+\(\dfrac{5}{16\times21}\)+\(\dfrac{5}{26\times31}\))
A = 5 \(\times\) ( \(\dfrac{1}{1}\) - \(\dfrac{1}{6}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{11}\)+ \(\dfrac{1}{11}\)- \(\dfrac{1}{16}\)+ \(\dfrac{1}{16}\)- \(\dfrac{1}{21}\)+ \(\dfrac{1}{26}\)- \(\dfrac{1}{31}\))
A = 5 \(\times\)( 1 - \(\dfrac{1}{31}\))
A = 5 \(\times\) \(\dfrac{30}{31}\)
A = \(\dfrac{150}{31}\)
Đặt \(A=\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{496.501}\)
\(\Rightarrow5A=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{496}+\frac{1}{501}\)
\(\Rightarrow5A=1-\frac{1}{501}=\frac{500}{501}\)
\(\Rightarrow A=\frac{500}{501}:5=\frac{500}{501}.\frac{1}{5}=\frac{100}{501}\)
k mik nhé
=1/5x(1-1/6+1/6-1/11-1/16+...+1/496-1/501
=1/5x(1-1/501)
=1/5x500/501
=100/501
1/4*7+1/4*9+1/5*9+1/5*11+1/6*11+1/6*13+1/7*13 = 1/4*(7+9)+1/5*(9+11)+1/6*(11+13)+1/7*13 = 1/4*16+1/5*20+1/6*24+13/7= 4+4+4+13/7 = 12+13/7 = 84/7+3/7 = 97/7
\(C=\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{2011.2016}\)
\(5C=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{2011.2016}\)
\(5C=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{2011}-\frac{1}{2016}\)
\(5C=1-\frac{1}{2016}\)
\(5C=\frac{2015}{2016}\)
\(C=\frac{2015}{2016}:5\)
\(C=\frac{403}{2016}\)
Đặt A = \(\frac{1}{1\times6}+\frac{1}{6\times11}+\frac{1}{11\times16}+...+\frac{1}{2011\times2016}\)
\(A\times5=\frac{5}{1\times6}+\frac{5}{6\times11}+\frac{5}{11\times16}+...+\frac{5}{2011\times2016}\)
\(A\times5=\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{2011}-\frac{1}{2016}\)
\(A\times5=\frac{1}{1}-\frac{1}{2016}\)
\(A=\frac{2015}{2016}\times\frac{1}{5}\)
\(A=\frac{2015}{10080}=\frac{403}{2016}\)
Sửa đề: 3/91*96
\(B=\dfrac{3}{1\cdot6}+\dfrac{3}{6\cdot11}+...+\dfrac{3}{91\cdot96}\)
=3/5(5/1*6+5/6*11+...+5/91*96)
=3/5(1-1/6+1/6-1/11+...+1/91-1/96)
=3/5*95/96=57/96=19/32