K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2020

Ta có: \(B=\frac{1}{3}+\frac{1}{3^3}+\frac{1}{3^5}+...+\frac{1}{3^{99}}\)

\(\Rightarrow9B=3+\frac{1}{3}+\frac{1}{3^3}+...+\frac{1}{3^{97}}\)

\(\Rightarrow9B-B=\left(3+\frac{1}{3}+...+\frac{1}{3^{97}}\right)-\left(\frac{1}{3}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)

\(\Leftrightarrow8B=3-\frac{1}{3^{99}}\)

\(\Rightarrow B=\frac{3^{100}-1}{8\cdot3^{99}}\)

10 tháng 7 2018

45 : 5 = 9

10 tháng 7 2018

Sr bạn nha mình nhầm=)))

23 tháng 9 2020

Ta có: 

\(A=1+2.6+3.6^2+4.6^3+...+100.6^{99}\)

=> \(6A=6+2.6^2+3.6^3+....+99.6^{99}+100.6^{100}\)

=> A - 6A = \(1+6+6^2+6^3+...+6^{99}-100.6^{100}\)

=> \(-5A=1+6+6^2+...+6^{99}-100.6^{100}\)

Đặt: \(B=1+6+6^2+...+6^{99}\)

=> \(6B=6+6^2+6^3+...+6^{100}\)

=> 6 B - B = \(6^{100}-1\)

=> B = \(\frac{6^{100}-1}{5}\)

=> \(-5A=\frac{6^{100}-1}{5}-100.6^{100}\)

=> \(A=\frac{499.6^{100}+1}{25}\)

25 tháng 5 2015

Áp dụng công thức: (n-2)n(n+2) = n3 - 4n => n = (n-2).n.(n+2) + 4n

b18) Áp dụng: ta có: 23 = 4.2; 43 = 2.4.6 + 4.4 ; 63 = 4.6.8 + 4.6; ...; 100 = 98.100.102 + 4.100

=> A = 4.2 + 2.4.6 + 4.4 + 4.6.8 + 4.6 +...+ 98.100.102 + 4.100

= (2.4.6 + 4.6.8 + 6.8.10 +....+ 98.100.102 ) + 4.(2 + 4 + 6 + ...+ 100) = B + 4.C

Tính B =  2.4.6 + 4.6.8 + 6.8.10 +....+ 98.100.102 

=> 8.B = 2.4.6.8 + 4.6.8.8 + 6.8.10.8 +...+ 98.100.102.8

= 2.4.6.8 + 4.6.8 (10 - 2) + 6.8.10.(12 - 4) +...+ 98.100.102.(104 - 96)

= 2.4.6.8 + 4.6.8.10 - 2.4.6.8 + 6.8.10.12 - 4.6.8.10 +...+ 98.100.102.104 - 96.98.100.102

= (2.4.6.8 + 4.6.8.10 + 6.8.10.12 +...+ 98.100.102.104) - (2.4.6.8 + 4.6.8.10 +...+ 96.98.100.102)

= 98.100.102.104

=> B =98.100.102.104 : 8 = 12 994 800

C = 2+ 4+ 6 +..+100 = (2+100) . 50 : 2 = 2550

Vậy A = B +4C = 12 994 800 + 4. 2550 = 13 005 000

1 tháng 6 2016

Ta có; B= 3100-399+398-397+...+32-3+1

            = (3100-399) + (398-397) + ... + (32-3) + 1

            = 399 + 397 + ......... + 3 + 1

=> 3B = 3100 + 399 + 397 + ......... + 3

3B - B = 3100 - 1

=> B = \(\frac{3^{100}-1}{2}\)

1 tháng 6 2016

Ta có; B= 3100-399+398-397+...+32-3+1

            = (3100-399) + (398-397) + ... + (32-3) + 1

            = 399 + 397 + ......... + 3 + 1

=> 3B = 3100 + 399 + 397 + ......... + 3

3B - B = 3100 - 1

=> B = \(\frac{3^{100}-1}{3}\)