Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\dfrac{3x-5}{9}\right)^{2018}>=0\forall x\)
\(\left(\dfrac{3y+0,4}{3}\right)^{2020}>=0\forall y\)
Do đó: \(\left(\dfrac{3x-5}{9}\right)^{2018}+\left(\dfrac{3y+0,4}{3}\right)^{2020}>=0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}\dfrac{3x-5}{9}=0\\\dfrac{3y+0,4}{3}=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x-5=0\\3y+0,4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=-\dfrac{0.4}{3}=-\dfrac{2}{15}\end{matrix}\right.\)
\(\left(3x-\frac{5}{9}\right)^{2002}+\left(3y+\frac{0,4}{3}\right)^{2004}=0\)
Ta thấy \(\left(3x-\frac{5}{9}\right)^{2002}\ge0\text{ với mọi x}\\ \left(3y+\frac{0,4}{3}\right)^{2004}\ge0\text{ với mọi y}\)
Mà \(\left(3x-\frac{5}{9}\right)^{2002}+\left(3y+\frac{0,4}{3}\right)^{2004}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(3x-\frac{5}{9}\right)^{2002}=0\\\left(3y+\frac{0,4}{3}\right)^{2004}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x-\frac{5}{9}=0\\3y+\frac{0,4}{3}=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}3x=\frac{5}{9}\\3y=\frac{-0,4}{3}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{\frac{5}{9}}{3}\\y=\frac{\frac{-0,4}{3}}{3}\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\frac{5}{27}\\y=\frac{-2}{45}\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(\frac{5}{27};\frac{-2}{45}\right)\)
\(\left(3x-\frac{5}{9}\right)^{2002}+\left(3y+\frac{0,4}{4}\right)^{2004}=0\)
Ta có: \(\left\{{}\begin{matrix}\left(3x-\frac{5}{9}\right)^{2002}\ge0;\forall x,y\\\left(3y+\frac{0,4}{3}\right)^{2004}\ge0;\forall x,y\end{matrix}\right.\)\(\Rightarrow\left(3x-\frac{5}{9}\right)^{2002}+\left(3y+\frac{0,4}{4}\right)^{2004}\ge0;\forall x,y\)
Do đó \(\left(3x-\frac{5}{9}\right)^{2002}+\left(3y+\frac{0,4}{4}\right)^{2004}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(3x-\frac{5}{9}\right)^{2002}=0\\\left(3y+\frac{0,4}{3}\right)^{2004}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-\frac{5}{9}=0\\3y+\frac{0,4}{3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{5}{27}\\y=\frac{-2}{45}\end{matrix}\right.\)
Vậy ...
Có:
\(0,4-\dfrac{3}{4}.\dfrac{-5}{9}\)
\(=\dfrac{2}{5}-\dfrac{3}{4}.\dfrac{-5}{9}\)
\(=\dfrac{2}{5}-\dfrac{-5}{12}\)
\(=\dfrac{2}{5}+\dfrac{5}{12}=\dfrac{49}{60}\)
Chúc bạn học tốt!
\(0,4-\dfrac{3}{4}.\dfrac{-5}{9}=\dfrac{2}{5}-\dfrac{-5}{12}=\dfrac{2}{5}+\dfrac{5}{12}=\dfrac{24}{60}+\dfrac{25}{60}=\dfrac{49}{60}\)
Mấy cái này dễ lắm nên lần sau bạn tự làm đi nha
b) \(\dfrac{\left(0,8\right)^5}{\left(0,4\right)^6}\)
\(=\dfrac{\left(0,8\right)^5}{\left(0.4\right)^5\cdot0,4}\)
\(=\left(\dfrac{0,8}{0,4}\right)^5\cdot\dfrac{1}{0,4}\)
\(=2^5\cdot\dfrac{5}{2}\)
\(=\dfrac{2^5\cdot5}{2}\)
\(=2^4\cdot5\)
\(=80\)
c) \(\dfrac{2^{15}\cdot9^4}{6^6\cdot8^3}\)
\(=\dfrac{2^{15}\cdot\left(3^2\right)^4}{2^6\cdot3^6\cdot\left(2^3\right)^3}\)
\(=\dfrac{2^{15}\cdot3^8}{2^{15}\cdot3^6}\)
\(=\dfrac{3^2}{1}\)
\(=9\)
a)\(5,75.\frac{{ - 8}}{9} =\frac{{575}}{100}.\frac{{ - 8}}{9}= \frac{{23}}{4}.\frac{{ - 8}}{9} = \frac{{ - 46}}{9}\)
b)\(2\frac{3}{8}.\left( { - 0,4} \right) = \frac{{19}}{8}.\frac{{ - 4}}{10} =\frac{{19}}{8}.\frac{{ - 2}}{5} = \frac{{ - 19}}{{20}}\);
c)\(\frac{{ - 12}}{5}:\left( { - 6,5} \right) = \frac{{ - 12}}{5}:\frac{{ - 65}}{10} =\frac{{ - 12}}{5}:\frac{{ - 13}}{2} = \frac{{ - 12}}{5}.\frac{{ - 2}}{{13}} = \frac{{24}}{{65}}\).
\(=\left(\dfrac{3}{4}-\dfrac{1}{5}\right)\cdot\left(\dfrac{2}{5}-\dfrac{4}{5}\right)\)
\(=\dfrac{11}{20}\cdot\dfrac{-2}{5}=\dfrac{-22}{100}=-\dfrac{11}{50}\)
Bài làm :
Ta có :
B= (-0,4)5 . (-0,4)9 : [(-0,4)3]5
B= (-0,4)14 : (-0,4)15
B= (-0,4)-1
B=1/-0,4=-2,5
Vậy B=-2,5