Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{\frac{8^{10}+4^{10}}{8^4+4^{11}}}=\sqrt{\frac{2^{30}+2^{20}}{2^{22}+2^{12}}}=\sqrt{\frac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(2^{10}+1\right)}}=\sqrt{\frac{2^{20}}{2^{12}}}=\sqrt{2^8}=\sqrt{\left(2^4\right)^2}\)\(=2^4=16.\)
#)Giải :
\(A=\sqrt{\frac{8^{10}+4^{10}}{8^4+4^{11}}}=\sqrt{\frac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}}=\sqrt{\frac{2^{30}\left(2^{10}+1\right)}{2^{12}\left(2^{10}+1\right)}}=\sqrt{\frac{2^{30}}{2^{12}}}=\sqrt{2^8}=\sqrt{256}=16\)
a: \(=\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{2^{10}\cdot3^8+2^{10}\cdot3^8\cdot5}=\dfrac{2^{10}\cdot3^8\left(1-3\right)}{2^{10}\cdot3^8\left(1+5\right)}=\dfrac{-2}{6}=\dfrac{-1}{3}\)
b: \(=\dfrac{5^{16}\cdot3^{21}}{5^{15}\cdot3^{22}}=\dfrac{5}{3}\)
\(M=\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{ \left(2^3\right)^4+\left(2^2\right)^{11}}=\frac{2^{30}+2^{20}}{2^{12}+2^{22}}=\frac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(1+2^{10}\right)}=\frac{2^{20}}{2^{12}}=2^8=256\)
Chúc học tốt :)
\(M=\frac{8^{10}+4^{10}}{8^4+4^{11}}\)
\(M=\frac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}\)
\(M=\frac{2^{30}+2^{20}}{2^{12}+2^{22}}\)
\(M=\frac{2^{20}.\left(2^{10}+1\right)}{2^{12}.\left(1+2^{10}\right)}\)
\(M=\frac{2^{20}}{2^{12}}\)
\(M=2^8=256\)
\(M=\frac{8^{10}+4^{10}=1.074.790.400}{8^4+4^{11}=4.198.400}\)
Vậy
\(\Rightarrow M=\frac{1.074.790.400}{4.198.400}\)
P/s; Ko chắc đâu nhé
\(A=\sqrt{\frac{2^{30}+2^{20}}{2^{12}+2^{22}}}=\sqrt{\frac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(1+2^{10}\right)}}=\sqrt{2^{20-12}}=\sqrt{2^8}=2^4=16\)