\(TínhA=\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+...}}}}}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2019

\(\sqrt{24+8\sqrt{5}}+\) \(\sqrt{9-4\sqrt{5}}=\) \(\sqrt{\left(2\sqrt{5}\right)^2+2.2\sqrt{5}.2+4}\) + \(\sqrt{5-2\sqrt{5}.2+4}\)

\(\sqrt{\left(2\sqrt{5}+2\right)^2}+\) \(\sqrt{\left(\sqrt{5}-2\right)^2}\) = \(2\sqrt{5}+2+\sqrt{5}-2=3\sqrt{5}\)

==================================================

\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\) = \(\sqrt{\sqrt{5}-\sqrt{3-\left(2\sqrt{5}-3\right)}}\)\(\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}-\sqrt{5}+1}=1\)

===========================================================

\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}\)

\(\sqrt{13+30\sqrt{3+2\sqrt{2}}}=\sqrt{13+30\left(\sqrt{2}+1\right)}=\sqrt{43+30\sqrt{2}}\) \(=\sqrt{\left(3\sqrt{2}+5\right)^2}=3\sqrt{2}+5\)

================================================================

8 tháng 7 2017

Ta có  A > 0 

Từ đó  \(A^2=2+\sqrt{2+\sqrt{2+...}}\Leftrightarrow A^2=2+A\Leftrightarrow A^2-A-2=0\)

\(\Leftrightarrow\left(A+1\right)\left(A-2\right)=0\Leftrightarrow\orbr{\begin{cases}A+1=0\\A-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}A=-1\\A=2\end{cases}}\)

Do A > 0 nên A= 2

8 tháng 7 2017

b, tương tự

c,\(C>2\)

Xét \(C^2=5+\sqrt{13+\sqrt{5+\sqrt{13...}}}\)

\(\left(C^2-5\right)^2=13+C\Leftrightarrow C^4-10C^2-C+12=0\Leftrightarrow\left(C^4-9C^2\right)-\left(C^2-9\right)-\left(C-3\right)=0\)

\(\Leftrightarrow\left(C-3\right)\left[\left(C+3\right)\left(C-1\right)\left(C+1\right)-1\right]=0\)

VÌ C> 2 =>  C-3 = 0 => C=3

1 tháng 7 2017

a,\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)

\(=\sqrt{13+30\sqrt{3+2\sqrt{2}}}\\ =\sqrt{13+30\left(\sqrt{2}+1\right)}\)

\(=\sqrt{43+30\sqrt{2}}=5+3\sqrt{2}\)

1 tháng 7 2017

b, \(\sqrt{5-\sqrt{13+4\sqrt{3}}}+\sqrt{3+\sqrt{13+4\sqrt{3}}}\)

\(\Leftrightarrow\sqrt{5-\sqrt{\left(2\sqrt{3}\right)^2+2.2\sqrt{3}+1}}+\sqrt{3+\sqrt{\left(2\sqrt{3}\right)^2+2.2\sqrt{3}+1}}\)

\(\Leftrightarrow\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}+\sqrt{3+\sqrt{\left(2\sqrt{3}+1\right)^2}}\)

\(\Leftrightarrow\sqrt{5-2\sqrt{3}-1}+\sqrt{3+2\sqrt{3}+1}\)

\(\Leftrightarrow\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(\Leftrightarrow\sqrt{3}-1+\sqrt{3}+1\)

\(\Leftrightarrow2\sqrt{3}\)

28 tháng 7 2016

a) \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt{5-\sqrt{3-\sqrt{20-2\cdot3\cdot\sqrt{20}+9}}}\)

\(=\sqrt{5-\sqrt{3-\sqrt{\left(\sqrt{20}-3\right)^2}}}\)

\(=\sqrt{5-\sqrt{3-\sqrt{20}+3}}\)

\(=\sqrt{5-\sqrt{6-\sqrt{20}}}\)

\(=\sqrt{5-\sqrt{5-2\sqrt{5}+1}}\)

\(=\sqrt{5-\sqrt{\left(\sqrt{5}+1\right)^2}}\)

\(=\sqrt{5-\sqrt{5}-1}\)

\(=\sqrt{4-\sqrt{5}}\)

c)\(\left(\sqrt{3}-\sqrt{2}\right)\sqrt{5+2\sqrt{6}}\)

\(=\left(\sqrt{3}-\sqrt{2}\right)\sqrt{3+2\cdot\sqrt{3}\cdot\sqrt{2}+2}\)

\(=\left(\sqrt{3}-\sqrt{2}\right)\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)

\(=\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)\)

\(=3-2=1\)

d)\(\sqrt{5-\sqrt{13+4\sqrt{3}}}+\sqrt{3+\sqrt{13+4\sqrt{3}}}\)

\(=\sqrt{5-\sqrt{12+2\cdot\sqrt{12}+1}}+\sqrt{3+\sqrt{12+2\cdot\sqrt{12}+1}}\)

\(=\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}+\sqrt{3+\sqrt{\left(\sqrt{12}+1\right)^2}}\)

\(=\sqrt{5-\sqrt{12}-1}+\sqrt{3+\sqrt{12}+1}\)

\(=\sqrt{4-\sqrt{12}}+\sqrt{4+\sqrt{12}}\)

\(=\sqrt{3-2\sqrt{3}+1}+\sqrt{4+2\sqrt{3}+1}\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\sqrt{3}-1+\sqrt{3+1}\)

\(=2\sqrt{3}\)

 

 

 

 

9 tháng 7 2020

c, Ta có : \(\sqrt{13+4\sqrt{3}}=\sqrt{12+2\sqrt{12}+1}=\sqrt{\left(\sqrt{12}+1\right)^2}=\sqrt{12}+1\)

=> \(\sqrt{5-\sqrt{12}-1}+\sqrt{3+\sqrt{12}+1}\)

\(=\sqrt{4-\sqrt{12}}+\sqrt{4+\sqrt{12}}=\sqrt{3-2\sqrt{3}+1}+\sqrt{3+2\sqrt{3}+1}\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)\(=\sqrt{3}+1+\sqrt{3}-1=2\sqrt{3}\)

7 tháng 8 2018

\(a,=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-6\sqrt{20}}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-\left(\sqrt{20}-3\right)}}\)

\(=\sqrt{\sqrt{5}-\sqrt{6-\sqrt{20}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)

\(=\sqrt{\sqrt{5}-\left(\sqrt{5}-1\right)}\)

\(=\sqrt{1}=1\)

b,c

\(\sqrt{13+4\sqrt{3}}=\sqrt{13+2\sqrt{12}}=\sqrt{12}+1=2\sqrt{3}+1\)

=>BT=\(\sqrt{5-\left(2\sqrt{3}+1\right)}+\sqrt{3+\left(2\sqrt{3}+1\right)}\)

\(=\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\)

c,\(=\sqrt{1+\sqrt{3+2\sqrt{3}+1}}+\sqrt{1-\sqrt{3-\left(2\sqrt{3}-1\right)}}\)

\(=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)

\(=\frac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{2}}=\frac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)

AH
Akai Haruma
Giáo viên
18 tháng 6 2019

Lời giải:

a)
\((\sqrt{5-2\sqrt{5}}+\sqrt{5+2\sqrt{5}})^2=5-2\sqrt{5}+5+2\sqrt{5}+2\sqrt{(5-2\sqrt{5})(5+2\sqrt{5})}\)

\(=10+2\sqrt{5^2-(2\sqrt{5})^2}=10+2\sqrt{5}\)

\(\Rightarrow \sqrt{5-2\sqrt{5}}+\sqrt{5+2\sqrt{5}}=\sqrt{10+2\sqrt{5}}\)

b)

\(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}=\sqrt{2^2+3-2.2\sqrt{3}}+\sqrt{2^2+3+2.2\sqrt{3}}\)

\(=\sqrt{(2-\sqrt{3})^2}+\sqrt{(2+\sqrt{3})^2}\)

\(=2-\sqrt{3}+2+\sqrt{3}=4\)

c)

\(\sqrt{13-4\sqrt{3}}+\sqrt{13+4\sqrt{3}}=\sqrt{13-2\sqrt{12}}+\sqrt{13+2\sqrt{12}}\)

\(=\sqrt{12+1-2\sqrt{12}}+\sqrt{12+1+2\sqrt{12}}=\sqrt{(\sqrt{12}-1)^2}+\sqrt{(\sqrt{12}+1)^2}\)

\(=\sqrt{12}-1+\sqrt{12}+1=2\sqrt{12}=4\sqrt{3}\)

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Lời giải:

a)
\((\sqrt{5-2\sqrt{5}}+\sqrt{5+2\sqrt{5}})^2=5-2\sqrt{5}+5+2\sqrt{5}+2\sqrt{(5-2\sqrt{5})(5+2\sqrt{5})}\)

\(=10+2\sqrt{5^2-(2\sqrt{5})^2}=10+2\sqrt{5}\)

\(\Rightarrow \sqrt{5-2\sqrt{5}}+\sqrt{5+2\sqrt{5}}=\sqrt{10+2\sqrt{5}}\)

b)

\(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}=\sqrt{2^2+3-2.2\sqrt{3}}+\sqrt{2^2+3+2.2\sqrt{3}}\)

\(=\sqrt{(2-\sqrt{3})^2}+\sqrt{(2+\sqrt{3})^2}\)

\(=2-\sqrt{3}+2+\sqrt{3}=4\)

c)

\(\sqrt{13-4\sqrt{3}}+\sqrt{13+4\sqrt{3}}=\sqrt{13-2\sqrt{12}}+\sqrt{13+2\sqrt{12}}\)

\(=\sqrt{12+1-2\sqrt{12}}+\sqrt{12+1+2\sqrt{12}}=\sqrt{(\sqrt{12}-1)^2}+\sqrt{(\sqrt{12}+1)^2}\)

\(=\sqrt{12}-1+\sqrt{12}+1=2\sqrt{12}=4\sqrt{3}\)

30 tháng 6 2018

a/ \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)

\(=\sqrt{13+30\sqrt{2+\sqrt{1+2\cdot1\cdot2\sqrt{2}+8}}}\)

\(=\sqrt{13+30\sqrt{2+\sqrt{\left(1+2\sqrt{2}\right)^2}}}\)

\(=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}=\sqrt{13+30\sqrt{\left(\sqrt{2}+1\right)^2}}\)

\(=\sqrt{13+30\left(\sqrt{2}+1\right)}=\sqrt{43+30\sqrt{2}}\)

\(=\sqrt{25+2\cdot5\cdot3\sqrt{2}+18}=\sqrt{\left(5+3\sqrt{2}\right)^2}=5+3\sqrt{2}\)

30 tháng 6 2018

b/ \(\left(\sqrt{3}-\sqrt{2}\right)\cdot\sqrt{5+2\sqrt{6}}=\sqrt{3\left(5+2\sqrt{6}\right)}-\sqrt{2\left(5+2\sqrt{6}\right)}\)

\(=\sqrt{15+6\sqrt{6}}-\sqrt{10+4\sqrt{6}}\)

\(=\sqrt{\left(3+\sqrt{6}\right)^2}-\sqrt{\left(2+\sqrt{6}\right)^2}\)

\(=3+\sqrt{6}-2-\sqrt{6}=1\)

c/ \(\sqrt{5-\sqrt{13+4\sqrt{3}}}+\sqrt{3+\sqrt{13+4\sqrt{3}}}\)

\(=\sqrt{5-\sqrt{\left(1+2\sqrt{3}\right)^2}}+\sqrt{3+\sqrt{\left(1+2\sqrt{3}\right)^2}}\)

\(=\sqrt{5-1-2\sqrt{3}}+\sqrt{3+1+2\sqrt{3}}\)

\(=\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}\)

\(=\sqrt{3}-1+1+\sqrt{3}=2\sqrt{3}\)