\(A=\frac{2x+y}{2x^2-xy}+\frac{16x}{y^2-4x}\)\(+\frac{2x-y}{2x^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2018

kết quả này có đúng không thì mình chưa chắc bạn nhé : \(\frac{4x+16}{y^2-4x}\)

25 tháng 2 2020

1) \(\frac{x+1}{2x-2}+\frac{x^2+3}{2-2x^2}\)

\(=\frac{-4x^2+8x-4}{-4x^3+4x^2+4x-4}\)

\(=\frac{-x^2+2x-1}{-x^3+x^2+x-1}\)

\(=\frac{\left(-x+1\right)\left(x-1\right)}{\left(-x-1\right)\left(x-1\right)\left(x-1\right)}\)

\(=\frac{1}{x+1}\)

2) \(\frac{1-2x}{2x}+\frac{2x}{2x-1}+\frac{1}{2x-4x^2}\)

\(=\frac{-16x^3+16x^2-4x}{-16x^4+16x^3-4x^2}\)

\(=\frac{-16x^2+16x-4}{-16x^3+16x^2-4x}\)

\(=\frac{-4x^2+4x-1}{-4x^3+4x^2-x}\)

\(=\frac{\left(-2x+1\right)\left(2x-1\right)}{x\left(-2x+1\right)\left(2x-1\right)}\)

\(=\frac{1}{x}\)

16 tháng 12 2018

\(a,\frac{2x+4}{10}+\frac{2-x}{15}=\frac{\left(2x+4\right).3}{10.3}+\frac{\left(2-x\right).2}{15.2}\)

\(=\frac{6x+12}{30}+\frac{4-2x}{30}=\frac{6x+12+4-2x}{30}=\frac{4x+16}{30}\)

\(=\frac{4.\left(x+4\right)}{30}=\frac{2\left(x+4\right)}{15}\)

\(b,\frac{3x}{10}+\frac{2x-1}{15}+\frac{2-x}{20}=\frac{3x.6}{10.6}+\frac{\left(2x-1\right).4}{15.4}+\frac{\left(2-x\right).3}{20.3}\)

\(=\frac{18x}{60}+\frac{8x-4}{60}+\frac{6-3x}{60}=\frac{18x+8x-4+6-3x}{60}=\frac{23x+2}{60}\)

\(c,\frac{x+1}{2x-2}+\frac{x^2+3}{2-2x^2}=\frac{x+1}{2\left(x-1\right)}+\frac{x^2+3}{2\left(1-x^2\right)}=\frac{x+1}{2\left(x-1\right)}+\frac{-x^2-3}{2\left(x^2-1\right)}\)

\(=\frac{x+1}{2\left(x-1\right)}+\frac{-x^2-3}{2\left(x-1\right)\left(x+1\right)}\)\(=\frac{\left(x+1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}+\frac{-x^2-3}{2\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x^2+2x+1-x^2-3}{2\left(x-1\right)\left(x+1\right)}=\frac{2x-2}{2\left(x-1\right)\left(x+1\right)}=\frac{2\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\)\(=\frac{1}{x+1}\)

1 tháng 2 2020

Bài 4:

a) \(\frac{2x^2-10xy}{2xy}+\frac{5y-x}{y}\)

\(=\frac{y.\left(2x^2-10xy\right)}{2xy.y}+\frac{2xy.\left(5y-x\right)}{2xy.y}\)

\(=\frac{2x^2y-10xy^2}{2xy^2}+\frac{10xy^2-2x^2y}{2xy^2}\)

\(=\frac{2x^2y-10xy^2+10xy^2-2x^2y}{2xy^2}\)

\(=\frac{0}{2xy^2}\)

\(=0.\)

b) \(\frac{2}{x+y}+\frac{1}{x-y}+\frac{3x}{x^2-y^2}\)

\(=\frac{2}{x+y}+\frac{1}{x-y}+\frac{3x}{\left(x-y\right).\left(x+y\right)}\)

\(=\frac{2.\left(x-y\right)}{\left(x-y\right).\left(x+y\right)}+\frac{1.\left(x+y\right)}{\left(x-y\right).\left(x+y\right)}+\frac{3x}{\left(x-y\right).\left(x+y\right)}\)

\(=\frac{2x-2y}{\left(x-y\right).\left(x+y\right)}+\frac{x+y}{\left(x-y\right).\left(x+y\right)}+\frac{3x}{\left(x-y\right).\left(x+y\right)}\)

\(=\frac{2x-2y+x+y+3x}{\left(x-y\right).\left(x+y\right)}\)

\(=\frac{6x-y}{\left(x-y\right).\left(x+y\right)}\)

c) \(x+y+\frac{x^2+y^2}{x+y}\)

\(=\frac{x+y}{1}+\frac{x^2+y^2}{x+y}\)

\(=\frac{\left(x+y\right).\left(x+y\right)}{x+y}+\frac{x^2+y^2}{x+y}\)

\(=\frac{\left(x+y\right)^2}{x+y}+\frac{x^2+y^2}{x+y}\)

\(=\frac{x^2+2xy+y^2}{x+y}+\frac{x^2+y^2}{x+y}\)

\(=\frac{x^2+2xy+y^2+x^2+y^2}{x+y}\)

\(=\frac{2x^2+2xy+2y^2}{x+y}.\)

Chúc bạn học tốt!

15 tháng 3 2020

1,\(\frac{3}{2x+6}-\frac{x-6}{x\left(2x+6\right)}\)

=\(\frac{3x}{x\left(2x+6\right)}+\frac{x-6}{x\left(2x+6\right)}\)

=\(\frac{3x+x-6}{x\left(2x+6\right)}\)=\(\frac{4x-6}{x\left(2x+6\right)}=\frac{2\left(2x-3\right)}{x\left(2x+6\right)}\)

15 tháng 3 2020

2, \(\frac{1}{1-x}-\frac{2x}{1-x^2}\)=\(\frac{1+x}{\left(1-x\right)\left(1+x\right)}+\frac{2x}{\left(1-x\right)\left(1+x\right)}\)=\(\frac{1+x+2x}{\left(1-x\right)\left(1+x\right)}=\frac{3x+1}{\left(1-x\right)\left(1+x\right)}\)