\(\frac{1}{2!}\)+\(\frac{2}{3!}\)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2018

hơi khó mình chuyên văn thui hì

17 tháng 2 2018

1) \(+2x+3y⋮17\)

\(\Rightarrow26x+39y⋮17\)

\(\Rightarrow\left(9x+5y\right)+17x+34y⋮17\)

Mà \(17x+34y⋮17\)

\(\Rightarrow9x+5y⋮17\)

\(+9x+5y⋮17\)

\(\Rightarrow36x+20y⋮17\)

\(\Rightarrow\left(2x+3y\right)+34x+17y⋮17\)

Mà \(34x+17y⋮17\)

\(\Rightarrow2x+3y⋮17\)

20 tháng 6 2017

a, \(C=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

\(3C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

\(3C-C=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)

\(2C=1-\frac{1}{3^{99}}\)

\(C=\frac{1}{2}-\frac{1}{2.3^{99}}< \frac{1}{2}\)(đpcm)

b, Đặt \(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)

\(3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)

\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\right)\)

\(2A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(6A=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(6A-2A=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)

\(4A=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)

\(4A=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)

\(4A=3-\frac{397}{3^{100}}\)

\(A=\frac{3}{4}-\frac{397}{4.3^{100}}< \frac{3}{4}\)(đpcm)

5 tháng 6 2017

\(A=\frac{1}{2!}+\frac{2}{3!}+...+\frac{99}{100!}\)

\(=\frac{2-1}{2!}+\frac{3-1}{3!}+...+\frac{100-1}{100!}\)

\(=\frac{2}{2!}-\frac{1}{2!}+...+\frac{100}{100!}-\frac{1}{100!}\)

\(=1-\frac{1}{2}+\frac{1}{2}-...-\frac{1}{100!}\)

\(=1-\frac{1}{100!}=\frac{99!}{100!}< 1\)

5 tháng 6 2017

\(A=\frac{1}{2\text{!}}+\frac{2}{3\text{!}}+...+\frac{99}{100\text{!}}=\frac{2-1}{2\text{!}}+\frac{3-1}{3\text{!}}+...+\frac{100-1}{100\text{!}}\)

\(=\frac{2}{2\text{!}}-\frac{1}{2\text{!}}+\frac{3}{3\text{!}}-\frac{1}{3\text{!}}+...+\frac{100}{100\text{!}}-\frac{1}{100\text{!}}\)

\(=1-\frac{1}{2\text{ }}+\frac{1}{2}-...-\frac{1}{100\text{!}}\)

\(=1-\frac{1}{100\text{!}}=\frac{99}{100\text{!}}< 1\)