Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.A= 1.2.3+2.3.4+...+29.30.31+x=15
\(4A=1.2.3.4+2.3.4.\left(5-1\right)+...+29.30.31.\left(32-28\right)+4x=60\)
\(\Rightarrow4A=1.2.3.4+2.3.4.5-1.2.3.4+...+29.30.31.32-28.29.30.31+4x=60\)
Từ đó suy ra nha bạn
2.\(\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)
\(=\frac{2}{2\left(2+1\right)}+\frac{2}{3.\left(3+1\right)}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)
\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)
\(=2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2007}{2009}\\ =1-\frac{2}{\left(x+1\right)}=\frac{2007}{2009}\)
\(\Rightarrow\frac{2}{x+1}=\frac{2}{2009}\Rightarrow x+1=2009\Rightarrow x=2008\)
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).x=\frac{23}{45}\)
\(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right).x=\frac{23}{45}\)
\(\frac{1}{2}\left(\frac{1}{2}-\frac{1}{90}\right).x=\frac{23}{45}\)
\(\Rightarrow x=2\)
=\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+............+\frac{1}{18.19.20}\)
=\(\frac{2}{1.2.3.2}+\frac{2}{2.3.4.2}+............+\frac{2}{18.19.20.2}\)
=\(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}............+\frac{1}{18.19}-\frac{1}{19.20}\)
=\(\frac{1}{1.2}-\frac{1}{19.20}\)
=\(\frac{189}{380}\)
\(A=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.2}+\frac{1}{2.15}+\frac{13}{15.4}\)
\(=\frac{1}{7}\left(\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\right)\)
\(=\frac{1}{7}\left(\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{28}\right)\)
\(=\frac{1}{2}.\frac{13}{28}\)
\(=\frac{13}{56}\)
Hình như phần 1 đề sai.Nếu C nhỏ nhất thì n không có giá trị thuộc Z.Nếu C lớn nhất thì n=(-1)
2.a.x/7+1/14=(-1)/y
<=>2x/14+1/14=(-1)/y
<=>2x+1/14=(-1)/y
=>(2x+1).y=14.(-1)
<=>(2x+1).y=(-14)
(2x+1) và y là cặp ước của (-14).
(-14)=(-1).14=(-14).1
Ta có bảng giá trị:
2x+1 | -1 | 14 | 1 | -14 |
2x | -2 | 13 | 0 | -15 |
x | -1 | 13/2 | 0 | -15/2 |
y | 14 | -1 | -14 | 1 |
Đánh giá | chọn | loại | chọn | loại |
Vậy(x,y) thuộc{(-1;14);(0;-14)}
b.x/9+-1/6=-1/y
<=>2x/9+-3/18=-1/y
<=>2x+(-3)/18=-1/y
=>[2x+(-3)].y=-1.18
<=>(2x-3).y=-18
(2x-3) và y là cặp ước của -18
-18=-1.18=-18.1
Ta có bảng giá trị:
2x-3 | -1 | 18 | 1 | -18 |
2x | 2 | 21 | 4 | -15 |
x | 1 | 21/2 | 2 | -15/2 |
y | 18 | -1 | -18 | 1 |
Đánh giá | chọn | loại | chọn | loại |
Vậy(x;y) thuộc{(1;18);(4;-18)}
1.
1.2 +2.3 +...+97.98
=1/3.(1.2.3 +2.3.3 +3.4.3 +...+97.98.3)
=1/3.(1.2.3 - 0.1.2+ 2.3.4 -1.2.3 + 3.4.5 -2.3.4 + ... +97.98.99 -96.97.98)
=1/3 . 97.98.99
= 313698
=>1.2 +2.3 +...+97.98-x=16
=>313698-x=16
=> x=313682
4.
\(\left[\left(\frac{36}{x}-x\right):x-x\right]:x-x=-x\)
\(\left[\left(\frac{36}{x}-x\right):x-x\right]:x=-x+x\)
\(\left[\left(\frac{36}{x}-x\right):x-x\right]:x=0\)
\(\left[\left(\frac{36}{x}-x\right):x-x\right]=0\)
\(\left(\frac{36}{x}-x\right):x=x\Rightarrow\frac{36}{x}-x=x^2\)
\(\frac{36}{x}=x^2+x=x\left(x+1\right)\Rightarrow36=x^2\left(x+1\right)\)
Mà Ư(36)={1;2;3;4;6;9;12;18;36}; 9 là số chính phương duy nhất bé hơn 36=> x2 = 9 => x=3
2 câu kia thì đợi một lúc.
4( 1 . 2 .3 ) = 1.2.3.4-0.1.2.3
4(2.3.4) = 2.3.4.5 - 1.2.3.4
4(3.4.5)=3.4.5.6 - 2.3.4.5
4(n-1)n(n+1)=(n-1)n(n+1)(n+1)-(n-2)(n-1)n(n+1)
=> 4B = (n-1)n(n+1)(n+2) => B = (n-1)n(n+1)(n+2) : 4
k nha
Ta có :
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2014.2015.2016}\)
\(\Rightarrow2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2014.2015.2016}\)
\(\Rightarrow2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2014.2015}-\frac{1}{2015.2016}\)
\(\Rightarrow2A=\frac{1}{1.2}-\frac{1}{2015.2016}\)
\(\Rightarrow A=\left(\frac{1}{2}-\frac{1}{2015.2016}\right):2\)
\(\Rightarrow A=\frac{1}{4}-\frac{1}{2015.2016}\)
\(\Rightarrow A< \frac{1}{4}\)
Vậy A < \(\frac{1}{4}\)
_Chúc bạn học tốt_
Ta có:
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+....+\frac{1}{2014+2015+2016}\)
\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+.....+\frac{2}{2014.2015.2016}\)
\(2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2014.2015}-\frac{1}{2015.2016}\)
\(2A=\frac{1}{1.2}-\frac{1}{2015.2016}\)
\(\Rightarrow2A< \frac{1}{1.2}=\frac{1}{2}\)
\(\Rightarrow A< \frac{1}{4}\)
Vậy ....
= 1/2*(1/1*2 - 1/2*3 + 1/2*3 - 1/3*4 + ... + 1/8*9 - 1/9*10) = 1/2*(1/1*2 - 1/9*10)=1/2 * 22/45 = 11/45
2A = \(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}-\frac{1}{9\cdot10}\)
2A = \(\frac{1}{2}-\frac{1}{90}\)
2A = \(\frac{44}{90}\)
A = \(\frac{22}{90}\)