Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)
\(3A=\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...+\frac{3}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)
\(3A=\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)
\(3A=\frac{1}{6}-\frac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)
\(3A=\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right)-6}{6\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)
=>\(A=\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right)-6}{18\left(n+1\right)\left(n+2\right)\left(n+3\right)}=\frac{n^3+3n^2+3n^2+9n+6-6}{18\left(n+1\right)\left(n+2\right)\left(n+3\right)}=\frac{n^3+6n^2+9n}{18\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)
Đặt A là biểu thức của đề bài.
Ta có: 3/ 1.2.3.4 = 1/ 1.2.3 -1/ 2.3.4
3/ 2.3.4.5 = 1/ 2.3.4 -1/ 3.4.5
3/ n(n+1)(n+2)(n+3) = 1/ n(n+1)(n+2) -1/ (n+1)(n+2)(n+3)
Do đó: 3A = 1/ 1.2.3 -1/ 2.3.4 + 1/ 2.3.4 - 1/ 3.4.5 +...+ 1/ n(n+1)(n+2) - 1/ (n+1)(n+2)(n+3)
3A = 1/ 1.2.3 - 1/ (n+1)(n+2)(n+3)
3A = 1/6 - 1/ (n+1)(n+2)(n+3)
A = 1/18 - 1/ 3(n+1)(n+2)(n+3)
Đó là kết quả rút gọn. Chúc bạn học tốt.
Đặt \(A=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+...+\frac{1}{n.\left(n+1\right).\left(n+2\right).\left(n+3\right)}\)
\(\Rightarrow3A=\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+\frac{3}{3.4.5.6}+...+\frac{3}{n.\left(n+1\right).\left(n+2\right).\left(n+3\right)}\)
\(3A=\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{n.\left(n+1\right).\left(n+2\right)}-\frac{1}{\left(n+1\right).\left(n+2\right).\left(n+3\right)}\)
\(3A=\frac{1}{1.2.3}-\frac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)
\(A=\frac{\frac{1}{1.2.3}-\frac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}}{3}\)
B tự làm nốt nhé
Bài này áp dụng công thức:
\(\frac{a}{b.c.d.e}=\frac{1}{b.c.d}-\frac{1}{c.d.e}\)( đk: \(e-b=a\))
a) Đặt A=\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+.....+\frac{1}{98\cdot99\cdot100}\)
\(\Rightarrow2A=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+....+\frac{2}{98\cdot99\cdot100}\)
\(\Leftrightarrow2A=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+.....+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\)
2A=\(\frac{1}{1\cdot2}-\frac{1}{99\cdot100}=\frac{4949}{9900}\) =>A=\(\frac{4949}{9900}\div2=\frac{4949}{19800}\)
Đặt B=\(\frac{1}{1\cdot2\cdot3\cdot4}+\frac{1}{2\cdot3\cdot4\cdot5}+...+\frac{1}{27\cdot28\cdot29\cdot30}\)
=>3B=\(\frac{3}{1\cdot2\cdot3\cdot4}+\frac{3}{2\cdot3\cdot4\cdot5}+....+\frac{3}{27\cdot28\cdot29\cdot30}\)
3B=\(\frac{1}{1\cdot2\cdot3}-\frac{1}{2\cdot3\cdot4}+\frac{1}{2\cdot3\cdot4}-\frac{1}{3\cdot4\cdot5}+.....+\frac{1}{27\cdot28\cdot29}-\frac{1}{28\cdot29\cdot30}\)
3B=\(\frac{1}{1\cdot2\cdot3}-\frac{1}{28\cdot29\cdot30}=\frac{1353}{8120}\)
=>B=\(\frac{1353}{8120}\div3=\frac{451}{8120}\)
Ta có : A-3x=B=>3x=A-B=\(\frac{4949}{19800}\)-\(\frac{451}{8120}\)\(\approx\frac{1}{5}\)=>x=\(\frac{1}{5}\div3\)=\(\frac{1}{15}\)
bạn làm theo công thức \(\frac{n}{n.\left(n+1\right)}=\frac{n}{n}-\frac{n}{n+1}\)
a)Đặt A= \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{\left(2n-1\right)\left(2n+1\right)}\)
\(\Rightarrow2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}\)
\(\Rightarrow2A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2n-1}-\frac{1}{2n+1}\)
\(\Rightarrow2A=1-\frac{1}{2n+1}< 1\)
\(\Rightarrow A< \frac{1}{2}\)(đpcm)
b)Ta có: \(1+\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3...n}< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)
mà \(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=1+1-\frac{1}{n}\)
\(=2-\frac{1}{n}< 2\)
\(\Rightarrow1+\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3...n}< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}< 2\)
\(\Rightarrow1+\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3...n}< 2\)(đpcm)
a) 2 +4+6+8+...+2018
= ( 2018+2) x 1009 : 2
= 2020 x 1009 : 2
= 1009 x (2020:2)
= 1009 x 1010
= 1 019 090
b) S = 10 + 102 + 103 + ...+ 10100
=> 10.S = 102 + 103 + 104 +...+ 10101
=> 10.S - S = 10101-10
9.S=10101- 10
\(\Rightarrow S=\frac{10^{101}-10}{9}\)
c) \(S=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)
\(\Rightarrow5S=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)
\(5S-S=1-\frac{1}{5^{100}}\)
\(4S=1-\frac{1}{5^{100}}\)
\(S=\frac{1-\frac{1}{5^{100}}}{4}\)
e cx ko nx, e ms hok lp 7 thoy, sang hè ms lp 8! e sr cj nhiều nha!
d) \(S=\frac{1!}{3!}+\frac{2!}{4!}+\frac{3!}{5!}+...+\frac{2018!}{2020!}\)
\(S=\frac{1}{1.2.3}+\frac{1.2}{1.2.3.4}+\frac{1.2.3}{1.2.3.4.5}+...+\frac{1.2.3...2018}{1.2.3...2020}\)
\(S=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2019.2020}\)
\(S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(S=\frac{1}{2}-\frac{1}{2020}\)
\(S=\frac{1009}{2020}\)
a;b;c có những câu tương tự rồi, ko giải lại nx
d) \(S=\frac{1!}{3!}+\frac{2!}{4!}+...+\frac{2018!}{2020!}\)
\(S=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2019.2020}\)
\(S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(S=\frac{1}{2}-\frac{1}{2020}\)
b tự làm nốt nha