Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) \(\frac{-5}{4+2y}+\frac{y-2}{2y+y^2}=\frac{-5}{2(y+2)}+\frac{y-2}{y(y+2)}=\frac{-5y}{2y(y+2)}+\frac{2(y-2)}{2y(y+2)}\)
\(=\frac{-5y+2(y-2)}{2y(y+2)}=\frac{-(3y+4)}{2y(y+2)}\)
b)
\(\frac{x-1}{x^2-2xy}+\frac{3}{2xy-x^2}=\frac{x-1}{x^2-2xy}-\frac{3}{x^2-2xy}=\frac{x-1-3}{x^2-2xy}=\frac{x-4}{x(x-2y)}\)
a) \(\dfrac{3x-2}{2xy}+\dfrac{7x+2}{2xy}\)
\(=\dfrac{\left(3x-2\right)+\left(7x+2\right)}{2xy}\)
\(=\dfrac{3x-2+7x+2}{2xy}\)
\(=\dfrac{10x}{2xy}\)
\(=\dfrac{5}{y}\)
b) \(\dfrac{5x+y^2}{x^2y}+\dfrac{x^2-5y}{xy^2}\) MTC: \(x^2y^2\)
\(=\dfrac{y\left(5x+y^2\right)}{x^2y^2}+\dfrac{x\left(x^2-5y\right)}{x^2y^2}\)
\(=\dfrac{y\left(5x+y^2\right)+x\left(x^2-5y\right)}{x^2y^2}\)
\(=\dfrac{5xy+y^3+x^3-5xy}{x^2y^2}\)
\(=\dfrac{y^3+x^3}{x^2y^2}\)
c) \(\dfrac{3x-2}{2xy}-\dfrac{7x-y}{2xy}\)
\(=\dfrac{\left(3x-2\right)-\left(7x-y\right)}{2xy}\)
\(=\dfrac{3x-2-7x+y}{2xy}\)
\(=\dfrac{-2-4x+y}{2xy}\)
d) \(\dfrac{5x+y^2}{x^2y}-\dfrac{5y-x^2}{xy^2}\) MTC: \(x^2y^2\)
\(=\dfrac{y\left(5x+y^2\right)}{x^2y^2}-\dfrac{x\left(5y-x^2\right)}{x^2y^2}\)
\(=\dfrac{y\left(5x+y^2\right)-x\left(5y-x^2\right)}{x^2y^2}\)
\(=\dfrac{5xy+y^3-5xy+x^3}{x^2y^2}\)
\(=\dfrac{y^3+x^3}{x^2y^2}\)
e) \(\dfrac{16xy}{3x-1}.\dfrac{3-9x}{12xy^3}\)
\(=\dfrac{16xy\left(3-9x\right)}{12xy^3\left(3x-1\right)}\)
\(=\dfrac{4\left(3-9x\right)}{3y^2\left(3x-1\right)}\)
\(=\dfrac{-4\left(9x-3\right)}{3y^2\left(3x-1\right)}\)
\(=\dfrac{-4.3\left(3x-1\right)}{3y^2\left(3x-1\right)}\)
\(=\dfrac{-12}{3y^2}\)
\(=\dfrac{-4}{y^2}\)
f) \(\dfrac{8xy}{3x-1}:\dfrac{12xy^3}{5-15x}\)
\(=\dfrac{8xy}{3x-1}.\dfrac{5-15x}{12xy^3}\)
\(=\dfrac{8xy\left(5-15x\right)}{12xy^3\left(3x-1\right)}\)
\(=\dfrac{2\left(5-15x\right)}{3y^2\left(3x-1\right)}\)
\(=\dfrac{-2\left(15x-5\right)}{3y^2\left(3x-1\right)}\)
\(=\dfrac{-2.5\left(3x-1\right)}{3y^2\left(3x-1\right)}\)
\(=\dfrac{-10}{3y^2}\)
a: \(\dfrac{5}{2x+6}=\dfrac{5\left(x-3\right)}{2\left(x+3\right)\left(x-3\right)}\)
3/x^2-9=6/2(x+3)(x-3)
b: \(\dfrac{2x}{x^2-8x+16}=\dfrac{2x}{\left(x-4\right)^2}=\dfrac{6x^2}{3x\left(x-4\right)^2}\)
\(\dfrac{x}{3x^2-12x}=\dfrac{x}{3x\left(x-4\right)}=\dfrac{x\left(x-4\right)}{3x\left(x-4\right)^2}\)
c: \(\dfrac{x+y}{x}=\dfrac{\left(x+y\right)\cdot\left(x-y\right)}{x\left(x-y\right)}\)
x/x-y=x^2/x(x-y)
e: \(\dfrac{1}{x+2}=\dfrac{2x-x^2}{x\left(x+2\right)\left(2-x\right)}\)
\(\dfrac{8}{2x-x^2}=\dfrac{8\left(x+2\right)}{x\left(2-x\right)\left(2+x\right)}\)
a,\(x^2+2y^2+z^2-2xy-2y+2z+2=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+\left(z^2+2x+1\right)=0\)\(\Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2+\left(z+1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-y\right)^2=0\\\left(y-1\right)^2=0\\\left(z+1\right)^1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-y=0\\y-1=0\\z+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\y=1\\z=-1\end{matrix}\right.\)
a)\(\frac{-5}{4+2y}+\frac{y-2}{2y+y^2}\)
\(\frac{-5}{2\left(2+y\right)}+\frac{y-2}{y\left(2+y\right)}\)
\(\frac{-5y}{2y\left(2+y\right)}+\frac{2y-4}{2y\left(2+y\right)}\)
\(\frac{-5y+2y-4}{2y\left(2+y\right)}\)
\(\frac{-3y-4}{2y\left(2+y\right)}\)
b)\(\frac{x-1}{x^2-2xy}+\frac{3}{2xy-x^2}\)
\(\frac{x-1}{x\left(x-2y\right)}+\frac{3}{x\left(2y-x\right)}\)
\(\frac{x-1}{x\left(x-2y\right)}+\frac{-3}{x\left(x-2y\right)}\)
\(\frac{x-1-3}{x\left(x-2y\right)}\)
\(\frac{x-4}{x\left(x-2\right)}\)