\(Tính:A=a\left(bz-cy\right)+b\left(cx-ax\right)+c\left(ay-bx\right)\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2018

\(A=a\left(bz-cy\right)+b\left(cx-az\right)+c\left(ay-bx\right)\)

\(A=abz-acy+bcx-baz+cay-cbx\)

\(A=\left(abz-baz\right)-\left(acy-cay\right)+\left(bcx-cbx\right)\)

\(A=z\left(ab-ba\right)-y\left(ac-ca\right)+x\left(bc-cb\right)\)

\(A=z.0-y.0+x.0=0\)

Vậy A = 0

26 tháng 2 2018

Phương Ann Nhã Doanh đề bài khó wá Mashiro Shiina Đinh Đức Hùng

Nguyễn Huy Tú Lightning Farron Akai Haruma

23 tháng 7 2017

giúp nha người bạn Toshiro Kiyoshi

24 tháng 7 2017

1. Ta có:

a) \(\left(x-2y\right)\left(3xy-2y+3x\right)\)

\(=x\left(3xy-2y+3x\right)-2y\left(3xy-2y+3x\right)\)

\(=3x^2y-2xy+3x^2-6xy^2+4y^2-6xy\)

\(=3x^2y-6xy^2+3x^2-8xy+4y^2\)

b) \(\left(x-1\right)\left(x-2\right)\left(x-3\right)=\left(x-1\right)\left[\left(x-2\right)\left(x-3\right)\right]\)

\(=\left(x-1\right)\left[x\left(x-3\right)-2\left(x-3\right)\right]\)

\(=\left(x-1\right)\left(x^2-3x-2x+6\right)\)

\(=\left(x-1\right)\left(x^2-5x+6\right)\)

\(=x\left(x^2-5x+6\right)-1\left(x^2-5x+6\right)\)

\(=x^3-5x^2+6x-x^2+5x-6\)

\(=x^3-6x^2+11x-6\)

20 tháng 10 2015

câu hỏi tương tự nhé 

31 tháng 5 2015

\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\) => \(\frac{a.\left(bz-cy\right)}{a^2}=\frac{b.\left(cx-az\right)}{b^2}=\frac{c.\left(ay-bx\right)}{c^2}\)

<=> \(\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{cay-bcx}{c^2}\). Theo tính chất dãy tỉ số bằng nhau

=> \(\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{cay-bcx}{c^2}=\frac{abz-acy+bcx-abz+cay-bcx}{a^2+b^2+c^2}=0\)

=> \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\) = 0 

=> \(bz-cy=0\Rightarrow bz=cy\Rightarrow\frac{y}{b}=\frac{z}{c}\) (1)

\(cx-az=0\Rightarrow\frac{x}{a}=\frac{z}{c}\)  (2)

Từ (1)(2) => \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)