K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2021

\(a,5a^2xy-10a^3x-10axy=5ax\left(ay-2a^2-2y\right)\)

\(b,\left(2x+3\right)\left(3-2x\right)-\left(2x+1\right)^2\\ =-\left(4x^2-9\right)-\left(4x^2+4x+1\right)\\ =-4x^2+9-4x^2-4x-1\\ =-8x^2-4x+8\\ =-4\left(2x^2+x-2\right)\)

15 tháng 11 2017

2)

a) \(3x^3-3x=0\)

\(\Leftrightarrow3x\left(x^2-1\right)=0\)

\(\Leftrightarrow3x\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-1=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

Vậy x=0 ; x=-1 ; x=1

b) \(x^2-x+\dfrac{1}{4}=0\)

\(\Leftrightarrow x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\)

\(\Leftrightarrow x-\dfrac{1}{2}=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(x=\dfrac{1}{2}\)

15 tháng 11 2017

1)

a) \(\left(x-2\right)\left(x^2+3x+4\right)\)

\(\Leftrightarrow x^3+3x^2+4x-2x^2-6x-8\)

\(\Leftrightarrow x^3+x^2-2x-8\)

b) \(\left(x-2\right)\left(x-x^2+4\right)\)

\(=x^2-x^3+4x-2x+2x^2-8\)

\(=3x^2-x^3+2x-8\)

c) \(\left(x^2-1\right)\left(x^2+2x\right)\)

\(=x^4+2x^3-x^2-2x\)

d) \(\left(2x-1\right)\left(3x+2\right)\left(3-x\right)\)

\(=\left(6x^2+4x-3x-2\right)\left(3-x\right)\)

\(=18x^2+12x-9x-6-6x^3-4x^2+3x^2+2x\)

\(=17x^2+5x-6-6x^3\)

21 tháng 5 2021

a.\(2x\left(7x^2-5x-1\right)=14x^3-10x^2-2x\)

b.\(-2x^3\left(2x^2-3y+5yz\right)=-4x^5+6x^3y-10x^3yz\)

c.\(\left(2x-y\right)\left(4x^2-2xy+y^2\right)=2x\left(4x^2-2xy+y^2\right)-y\left(4x^2-2xy+y^2\right)\)

\(=8x^2-4x^2y+4xy^2-4x^2y+2xy^2-y^3\)

21 tháng 5 2021

a.2x(7x2−5x−1)=14x3−10x2−2x

b.−2x3(2x2−3y+5yz)=−4x5+6x3y−10x3yz

c.(2x−y)(4x2−2xy+y2)=2x(4x2−2xy+y2)−y(4x2−2xy+y2)

=8x2−4x2y+4xy2−4x2y+2xy2−y3

8 tháng 1 2018

Bài 2: a) \(3x^3-3x=0\Leftrightarrow3x\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)

b) \(x^2-x+\frac{1}{4}=0\Leftrightarrow x^2-2.\frac{1}{2}+\left(\frac{1}{2}\right)^2=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

27 tháng 11 2022

a: \(=\dfrac{4x^2+4x+1-4x^2+4x-1}{\left(2x+1\right)\left(2x-1\right)}\cdot\dfrac{5\left(2x-1\right)}{4x}\)

\(=\dfrac{8x\cdot5}{4x\left(2x+1\right)}=\dfrac{10}{2x+1}\)

b: \(=\left(\dfrac{1}{x^2+1}+\dfrac{x-2}{x+1}\right):\dfrac{1+x^2-2x}{x}\)

\(=\dfrac{x+1+x^3+x-2x^2-2}{\left(x+1\right)\left(x^2+1\right)}\cdot\dfrac{x}{\left(x-1\right)^2}\)

\(=\dfrac{x^3-2x^2+2x-1}{\left(x+1\right)\left(x^2+1\right)}\cdot\dfrac{x}{\left(x-1\right)^2}\)

\(=\dfrac{\left(x-1\right)\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2+1\right)}\cdot\dfrac{x}{\left(x-1\right)^2}\)

\(=\dfrac{x\left(x^2-x+1\right)}{\left(x^2-1\right)\left(x^2+1\right)}\)

c: \(=\dfrac{1}{x-1}-\dfrac{x^3-x}{x^2+1}\cdot\left(\dfrac{1}{\left(x-1\right)^2}-\dfrac{1}{\left(x-1\right)\left(x+1\right)}\right)\)

\(=\dfrac{1}{x-1}-\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\dfrac{x+1-x+1}{\left(x-1\right)^2\cdot\left(x+1\right)}\)

\(=\dfrac{1}{x-1}-\dfrac{x}{x^2+1}\cdot\dfrac{2}{\left(x-1\right)}\)

\(=\dfrac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}=\dfrac{x-1}{x^2+1}\)

30 tháng 10 2020

Bài 1:

1.1

a) Ta có: \(A=\left(x+y\right)\left(x-y\right)+x\left(2x-1\right)+y\left(y+1\right)\)

\(=x^2-y^2+2x^2-x+y^2+y\)

\(=3x^2-x+y\)

b) Thay x=1 và y=2018 vào biểu thức \(A=3x^2-x+y\), ta được:

\(A=3\cdot1^2-1+2018\)

\(=2+2018=2020\)

Vậy: Khi x=1 và y=2018 thì A=2020

1.2

a) Ta có: \(2x^2\left(x^2-3x+1\right)\)

\(=2x^2\cdot x^2-2x^2\cdot3x+2x^2\cdot1\)

\(=2x^4-6x^3+2x^2\)

b) Ta có: \(\left(2x-1\right)\left(6x^2+3x-3\right)\)

\(=2x\cdot6x^2+2x\cdot3x-2x\cdot3-6x^2-3x+3\)

\(=12x^3+6x^2-6x-6x^2-3x+3\)

\(=12x^3-9x+3\)

1.3

a) Ta có: \(x^3-2x^2+x\)

\(=x\left(x^2-2x+1\right)\)

\(=x\left(x-1\right)^2\)

b) Ta có: \(x^2-xy-8x+8y\)

\(=x\left(x-y\right)-8\left(x-y\right)\)

\(=\left(x-y\right)\left(x-8\right)\)

30 tháng 10 2020

1.1

a) A= (x+y).(x-y) + x(2x-1) + y(y+1)

= x2- x.y + x.y - y2 + 2x2 - x +y2 + y = 3x2 - x + y

b) Ta có A= 3x2 - x + y; thay x=1,y=2018 vào biểu thức:

A= 3.12 - 1+ 2018 = 2020

1.3

a)x3 - 2x2 + x = x.( x2 - 2x + 1) = x.(x-1)2

b) x2 - xy - 8x + 8y = x.(x - y) - 8.(x - y)= (x - y).(x-8).

Xin lỗi nha, tớ không biết làm bài 1.2.

Chúc bạn học tốt!!

a: \(\Leftrightarrow x^3+8-x^3-3x=5\)

=>3x=3

hay x=1

b: \(\Leftrightarrow x^3-8-x\left(x^2-1\right)=8\)

\(\Leftrightarrow x^3-8-x^3+x=8\)

=>x=16

c: =>x2+2=3

=>x2=1

=>x=1 hoặc x=-1

f: \(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+3\right)^2=0\)

=>x=1 và y=-3

27 tháng 6 2018

a) x2 - 2x + 5

= x2 - x - x + 1 + 4

= (x2 - x) - (x - 1) + 4

= x.(x-1) - (x-1) + 4

= (x-1)^2 + 4

Có: (x-1)^2 \(\ge\)0 => (x-1)^2 + 4\(\ge4\)

Dấu ''='' xảy ra khi x-1=0 => x = 1.

Vậy Min của x^2 - 2x + 5 bằng 4 khi x = 1

7 tháng 12 2016

 

Tính
a) ( 2x + 5 )2 + ( 2x + 5 )2 - 2(2x + 3 ) (2x + 5 )

=> Sai đề

7 tháng 12 2016

 

b) ( x - 3 ) ( x + 5 ) - ( x - 3 ) 2

=(x-3)[(x+5)-(x-3)]

=(x-3)(x+5-x+3)

=(x-3).8

Câu 2:

a: \(=\dfrac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}=x^2-2x+1=\left(x-1\right)^2\)

b: \(=\dfrac{x^3-3x^2+2x^2-6x-x+3}{x-3}=x^2+2x-1\)