K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2017

=3= cái này mờ toán 7 à? 

2 tháng 2 2017

3A=3+3*2+3*3+....+3*100+3*101

LAY 3A-A TA DC 

 A= 3*101-1=>\(\frac{3^{101}-1}{2}\)

11 tháng 12 2015

\(A=2^{100}-2^{99}+2^{98}-2^{97}+....+2^2-2\)

\(2A=2^{101}-2^{100}+2^{99}-2^{98}+....+2^3-2^2\)

\(2A+A=2^{101}-2\)

\(A=\frac{2^{101}-2}{3}\)

b) tương tự

\(B=\frac{3^{101}+1}{4}\)

28 tháng 8 2018

C =\(\frac{1}{100}-\frac{1}{100.99}-...\)\(-\frac{1}{3.2}-\frac{1}{2.1}\)

C = \(\frac{1}{100}-\frac{1}{100}+\frac{1}{99}-\frac{1}{99}+...\)\(+\frac{1}{3}-\frac{1}{3}+\frac{1}{2}-\frac{1}{2}+1\)

C = 1

9 tháng 9 2017

Đặt: \(A=\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{100}{3^{100}}\)

\(3A=3\left(\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{100}{3^{100}}\right)\)

\(3A=1+\dfrac{2}{3}+\dfrac{3}{3^2}+...+\dfrac{100}{3^{99}}\)

\(3A-A=\left(1+\dfrac{2}{3}+\dfrac{3}{3^2}+...+\dfrac{100}{3^{99}}\right)-\left(\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{100}{3^{100}}\right)\)

\(2A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}+\dfrac{100}{3^{100}}\)

Đặt:

\(B=1+\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\)

\(3B=3+1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}\)

\(3B-B=\left(4+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}\right)-\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)\)

\(2B=3-\dfrac{1}{3^{99}}\)

\(B=\dfrac{3}{2}-\dfrac{1}{3^{99}.2}\)

Vậy \(A=\dfrac{3}{4}-\dfrac{1}{3^{99}.4}-\dfrac{100}{3^{100}}< \dfrac{3}{4}\)

Ta có điều phải chứng minh

9 tháng 9 2017

Mk chỉ giúp các bạn đc thêm SP thôi !!!

hjhjhaha

13 tháng 12 2015

ai ủng hộ 9 li-ke tròn 100 Điểm hỏi đáp , thanks trước nha

21 tháng 5 2018

mk nè bn k trước đi

14 tháng 7 2018

mk nua

27 tháng 6 2018

\(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)

\(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)

\(2A+A=2^{101}-2\)

\(A=\frac{2^{101}-2}{3}\)

\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

\(3B-B=1-\frac{1}{3^{99}}\)

\(B=\frac{1-\frac{1}{3^{99}}}{2}\)

27 tháng 6 2018

\(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)

\(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)

\(2A+A=\left(2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-^2\right)+\left(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\right)\)

\(3A=2^{101}-2\)

\(A=\frac{2^{101}-2}{3}\)

Chúc bạn học tốt ~ 

22 tháng 1 2016

S= 1^3+2^3+3^3+...+100^3                                                                                                                             S=1^2*1+2^2*2+3^2*3+...+100^2*100                                                                                                             S=(100*101*201)/6+5050                                                                                                                               S=5126002500

8 tháng 11 2017

Ta có: \(A=1+2+2^2+2^3+...+2^{99}\)

       \(\Rightarrow2A=2+2^2+2^3+...+2^{100}\)

     \(\Rightarrow2A-A=A=\left(2+2^2+2^3+...+2^{100}\right)-\left(1+2+2^2+...+2^{99}\right)=2^{100}-1\)

Vậy \(A=2^{100}-1\)

8 tháng 11 2017

Lol đây toán lớp 6 mà