Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. 3S= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)]
=n(n+1)(n+2)
=>S
Biểu thức này dùng để tính tổng 1^2+..+n^2 rất tiện và thực tế cũng là ket quả của hệ quả trên.
dùng cách thức tương tự có thể tính S=1.2.3+...+ n(n+1)(n+2) từ đó suy ra tổng 1^3+...+n^3
Việc sử dụng trước kết quả tổng 1^2+...+n^2 theo tôi là ngược tiến trình.
2. S = 1.2.3 + 2.3.4 +..+ (n-1).n.(n+1)
4S = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 +..+ (n-1)n(n+1).4
ghi dọc cho dễ nhìn:
(k-1)k(k+1).4 = (k-1)k(k+1)[(k+2) - (k-2)] = (k-1)k(k+1)(k+2) - (k-2)(k-1)k(k+1)
ad cho k chạy từ 2 đến n ta có:
1.2.3.4 = 1.2.3.4
2.3.4.4 = 2.3.4.5 - 1.2.3.4
3.4.5.4 = 3.4.5.6 - 2.3.4.5
...
(n-2)(n-1)n.4 = (n-2)(n-1)n(n+1) - (n-3)(n-2)(n-1)n
(n-1)n(n+1).4 = (n-1)n(n+1)(n+2) - (n-2)(n-1)n(n+1)
+ + cộng lại vế theo vế + + (chú ý cơ chế rút gọn)
4S = (n-1)n(n+1)(n+2)
3.
Ta có :
\(A=\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2017\right)}{1.2+2.3+3.4+...+2017.2018}\)
\(A=\frac{\frac{2}{2}+\frac{2\left(2+1\right)}{2}+\frac{3\left(3+1\right)}{2}+...+\frac{2017\left(2017+1\right)}{2}}{1.2+2.3+3.4+...+2017.2018}\)
\(A=\frac{\frac{2}{2}+\frac{2.3}{2}+\frac{3.4}{2}+...+\frac{2017.2018}{2}}{1.2+2.3+3.4+...+2017.2018}\)
\(A=\frac{\frac{1.2+2.3+3.4+...+2017.2018}{2}}{1.2+2.3+3.4+...+2017.2018}\)
\(A=\frac{1.2+2.3+3.4+...+2017.2018}{2}.\frac{1}{1.2+2.3+3.4+...+2017.2018}\)
\(A=\frac{1}{2}\)
Vậy \(A=\frac{1}{2}\)
Chúc bạn học tốt ~
\(=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\right)\)
\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\right)\)
\(=2.\left(1-\frac{1}{2018}\right)\)
\(=2.\frac{2017}{2018}\)
\(=\frac{2017}{1009}\)
quy tử số thành 1
A = 2.(1/1.2+1/3.2+1/3.4+... + 1/2017.2018)
A= 2. (1- 1/2018)
Tính nốt nha
TL:
a)\(2+4+6+...+2000=\frac{\left(2+2000\right).\left[\left(2000-2\right):2+1\right]}{2}\)
\(=1001000\)
Câu b tương tự nha bạn:)
c) Đặt 1.2+2.3+....+99.100 =A
\(3A=1.2.3+2.3.\left(4-1\right)+...+99.100.\left(101-98\right)\)
\(3A=1.2.3+2.3.4-1.2.3+...99.100.101-98.99.100\)
\(3A=99.100.101\)
\(A=333300\)
Vậy .....
a) Đặt A= 2+4+6+...+1998+2000
Ta có: A=(2+2000).1000:2
=> A=2002.1000:2
=> A=2002000:2
=> A=1001000
b) Đặt B= 5+9+13+...+1997+2001
=> B=(2001+5).500:2
=> B=2006.500:2
=> B=1003000:2
=> B=501500
c)Đặt S= 1.2 + 2.3 + 3.4 + ...+ 99.100
=> 3S = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3
3S= 1.2.3+2.3(4-1)+3.4(5-2)+...+98.99(100-97)+99.100(101-98)
3S= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-97.98.99+99.100.101-98.99.100
3S = 99.100.101 => 3S = 3.33.100.101
=> S=33.100.101= 333300
=> 3A = 3 [ 1.2 + 2.3 + 3.4 + ... + (n-1).n ]
=> 3A = 1.2.3 + 2.3.3 + 3.4.3 +... + 1001.1002.3
=> 3A = 1.2.3 + 2.3 . ( 4-1 ) +3.4.( 5-2 ) + ... + 1001.1002 ( 1003-1000 )
=> 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +... + 1001.1002 .1003 - 1000.1001.1002
=> 3A = 1001.1002.1003
=> A = 1001 . 1002 . 1003 : 3
=> A = ?
ai tích mình mình tích lại cho
tinh tong A= 1.2^2+2.3^2+3.4^2+........+2018.2019^2