\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2015.2016.2017}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2016

a)\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+....+\(\frac{1}{100.101}\)=1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+....+\(\frac{1}{100}\)-\(\frac{1}{101}\)=1-\(\frac{1}{101}\)=\(\frac{100}{101}\)

b)\(\frac{1}{1.2.3}\)+\(\frac{1}{2.3.4}\)+....+\(\frac{1}{28.29.30}\)=\(\frac{868}{3480}\)=\(\frac{217}{870}\)

c)\(\frac{1}{1.2.3.4}\)+\(\frac{1}{2.3.4.5}\)+....+\(\frac{1}{27.28.29.30}\)=\(\frac{24354}{438480}\)=\(\frac{451}{8120}\)

A=\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2015.2016.2017}\)

\(\Leftrightarrow\)A=\(\frac{1}{1}-\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2016}-\frac{2}{2017}\)

\(\Leftrightarrow\)A=\(\frac{1}{1}-\frac{1}{2017}\)

\(\Leftrightarrow\)A=\(\frac{2016}{2017}\)

mk quên:Có \(\frac{2016}{2017}< \frac{1}{4}\) \(\Rightarrow\)S<\(\frac{1}{4}\)

20 tháng 7 2016

F= \(\frac{1}{1.2.3}\)\(\frac{1}{2.3.4}\)\(\frac{1}{2.3.4}\)\(\frac{1}{3.4.5}\)+....+\(\frac{1}{47.48.49}\)\(\frac{1}{48.49.50}\)

F=\(\frac{1}{1.2.3}\)\(\frac{1}{48.49.50}\)

F=\(\frac{6533}{39200}\)

5 tháng 6 2015

\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{97.98.99.100}=\frac{1}{3}.\left(\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...+\frac{3}{97.98.99.100}\right)=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{97.98.99}-\frac{1}{98.99.100}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{98.99.100}\right)=\frac{1}{3}.\left(\frac{1}{6}-\frac{1}{970200}\right)=\frac{1}{18}-\frac{1}{6.970200}\)

5 tháng 4 2017

        \(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{97.98.99.100}\)

\(=\frac{1}{3}.\left(\frac{3}{1.2.3.4}+ \frac{3}{2.3.4.5}+...+\frac{3}{97.98.99.100}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{97.98.99}-\frac{1}{98.99.100}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{98.99.100}\right)\)

\(=\frac{1}{3}.\frac{161699}{970200}=\frac{161699}{299106000}\)

29 tháng 4 2018

* Công thức :  \(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{6}\right)=\frac{1}{2}.\left(\frac{3}{6}-\frac{1}{6}\right)=\frac{1}{2}.\frac{2}{6}=\frac{1}{6}=\frac{1}{1.2.3}\)

\(A=\frac{3}{1.2.3}+\frac{3}{2.3.4}+...+\frac{3}{2015.2016.2017}\)

\(\Rightarrow A=3.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2015.2016.2017}\right)\)

\(\Rightarrow A=3.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2015.2016}-\frac{1}{2016.2017}\right)\)

\(\Rightarrow A=3.\left(\frac{1}{1.2}-\frac{1}{2016.2017}\right)\)

\(\Rightarrow A=3.\left(\frac{1}{2}-\frac{1}{4066272}\right)\)

\(\Rightarrow A=3.\left(\frac{2033136}{4066272}-\frac{1}{4066272}\right)\)

\(\Rightarrow A=3.\frac{2033135}{4066272}>3.\frac{1355424}{4066272}\)

\(\Rightarrow A>3.\frac{1}{3}\)

\(\Rightarrow A>1\)

Chúc bạn học tốt !!! 

29 tháng 4 2018

Thanks bạn Hỏa Long Natsu

19 tháng 3 2017

= 1/2.(2/1.2.3+2/2.3.4+.....+2/50.51.52

=1/2.(1/1.2-1/2.3+1/2.3-1/3.4+....+1/50.51-1/51.52

=1/2.(1/1.2-1/51.52)

=1/2.(1/2-1/2652)

=1/2.1325/2652

=1325/5304

19 tháng 3 2017

A=1/1.2-1/2.3+1/2.3-1/3.4+1/3.4-1/4.5+...+1/50.51-1/51.52

A=1/1.2-1/51.52

phần còn lại tự giải nhé

14 tháng 7 2016

\(\frac{49}{50}nha\)