Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(B=\dfrac{3y+5}{y-1}-\dfrac{-y^2-4y}{y-1}+\dfrac{y^2+y+7}{y-1}\)
\(=\dfrac{3y+5+y^2+4y+y^2+y+7}{y-1}\)
\(=\dfrac{2y^2+8y+12}{y-1}\)
a: \(=\dfrac{2x-2x+y}{2\left(2x-y\right)}=\dfrac{y}{2\left(2x-y\right)}\)
b: \(=\dfrac{3x+1}{\left(x-1\right)\left(x+1\right)}-\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{6x+2-x^2-x}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{-x^2+5x+2}{2\left(x-1\right)\left(x+1\right)}\)
c: \(=\dfrac{1}{x+2}+\dfrac{x+8}{3x\left(x+2\right)}\)
\(=\dfrac{3x+x+8}{3x\left(x+2\right)}=\dfrac{4x+8}{3x\left(x+2\right)}=\dfrac{4}{3x}\)
d: \(=\dfrac{4x+6-2x^2+3x+2x+1}{\left(2x-3\right)\left(2x+3\right)}\)
\(=\dfrac{-2x^2+9x+7}{\left(2x-3\right)\left(2x+3\right)}\)
2)
a) \(\dfrac{1}{x}.\dfrac{6x}{y}\)
\(=\dfrac{6x}{xy}\)
\(=\dfrac{6}{y}\)
b) \(\dfrac{2x^2}{y}.3xy^2\)
\(=\dfrac{2x^2.3xy^2}{y}\)
\(=\dfrac{6x^3y^2}{y}\)
\(=6x^3y\)
c) \(\dfrac{15x}{7y^3}.\dfrac{2y^2}{x^2}\)
\(=\dfrac{15x.2y^2}{7y^3.x^2}\)
\(=\dfrac{30xy^2}{7x^2y^3}\)
\(=\dfrac{30}{7xy}\)
d) \(\dfrac{2x^2}{x-y}.\dfrac{y}{5x^3}\)
\(=\dfrac{2x^2.y}{\left(x-y\right).5x^3}\)
\(=\dfrac{2y}{5x\left(x-y\right)}\)
a) ĐKXD: x ≠ 2
\(\dfrac{1}{x-2}+3=\dfrac{3-x}{x-2}\)
\(\Leftrightarrow\dfrac{1}{x-2}-\dfrac{3-x}{x-2}=-3\)
\(\Leftrightarrow\dfrac{1-3+x}{x-2}=-3\)
\(\Leftrightarrow\dfrac{-2+x}{x-2}=-3\)
\(\Leftrightarrow-2+x=-3\left(x-2\right)\)
\(\Leftrightarrow-2+x=-3x+6\)
\(\Leftrightarrow x+3x=6+2\)
\(\Leftrightarrow4x=8\)
\(\Leftrightarrow x=2\) (loại vì không thỏa mãn điều kiện)
Vậy S = ∅
b) ĐKXĐ: x ≠ 7
\(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)
\(\Leftrightarrow\dfrac{8-x}{x-7}-\dfrac{1}{x-7}=8\)
\(\Leftrightarrow\dfrac{7-x}{x-7}=8\)
\(\Leftrightarrow-1=8\left(vô-lý\right)\)
Vậy S = ∅
P/s: Ko chắc ạ!
c) ĐKXĐ: x ≠ 1
\(\dfrac{1}{x-1}+\dfrac{2x}{x^2+x+1}=\dfrac{3x^2}{x^3-1}\)
Quy đồng và khử mẫu ta được:
\(x^2+x+1+2x\left(x-1\right)=3x^2\)
\(\Leftrightarrow x^2+x+1+2x^2-2x-3x^2=0\)
\(\Leftrightarrow-x+1=0\)
\(\Leftrightarrow x=1\) (loại vì ko t/m đk)
Vậy S = ∅
\(\dfrac{2x^2-x}{x-1}+\dfrac{x+1}{1-x}+\dfrac{2-x^2}{x-1}.\left(x\ne1\right).\)
\(\dfrac{2x^2-x-x-1+2-x^2}{x-1}=\dfrac{x^2-2x+1}{x-1}=\dfrac{\left(x-1\right)^2}{x-1}=x-1.\)
a) \(A=\dfrac{2\left(x+y\right)\left(x-y\right)}{x}-\dfrac{-2y^2}{x}\)
\(A=\dfrac{2\left(x^2-y^2\right)+2y^2}{x}\)
\(A=\dfrac{2x^2-2y^2+2y^2}{x}\)
\(A=\dfrac{2x^2}{x}=2x\)
b) \(B=\dfrac{xy}{2x-y}-\dfrac{x^2-1}{y-2x}\)
\(B=\dfrac{xy}{2x-y}-\dfrac{1-x^2}{2x-y}\)
\(B=\dfrac{xy-1+x^2}{2x-y}\)
\(B=\dfrac{x^2+xy-1}{2x-y}\)
c) \(C=\dfrac{4x-1}{3x^2y}-\dfrac{7x-1}{3x^2y}\)
\(C=\dfrac{4x-1-7x+1}{3x^2y}\)
\(C=\dfrac{-3x}{3x^2y}\)
\(C=\dfrac{-1}{xy}\)
a: \(=\dfrac{x+2y}{xy}\cdot\dfrac{2x^2}{\left(x+2y\right)^2}=\dfrac{2x}{y\left(x+2y\right)}\)
b: \(=\dfrac{x\left(4x^2-y^2\right)}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(2x-y\right)^3}\)
\(=\dfrac{x\left(x-y\right)\left(2x+y\right)\left(2x-y\right)}{\left(2x-y\right)^3}\)
\(=\dfrac{x\left(x-y\right)\left(2x+y\right)}{\left(2x-y\right)^2}\)
c: \(=\dfrac{x+3}{x+2}\cdot\dfrac{2x-1}{3\left(x+3\right)}\cdot\dfrac{2\left(x+2\right)}{2\left(2x-1\right)}\)
=1/3
d: \(=\dfrac{x+1}{x+2}:\left(\dfrac{1}{2x}\cdot\dfrac{3x+3}{2x-3}\right)\)
\(=\dfrac{x+1}{x+2}\cdot\dfrac{2x\left(2x-3\right)}{3\left(x+1\right)}=\dfrac{2x\left(2x-3\right)}{3\left(x+2\right)}\)
a) ĐKXĐ: \(x\ne0\)
\(\dfrac{4x+1}{3x}+\dfrac{2x-3}{6x}\)
\(=\dfrac{2\left(4x+1\right)+2x-3}{6x}\)
\(=\dfrac{10x-1}{6x}\)
b) ĐKXĐ: \(x,y\ne0\)
\(\dfrac{x^2-y^2}{6x^2y^2}:\dfrac{x+y}{3xy}\)
\(=\dfrac{\left(x-y\right).\left(x+y\right)}{6x^2y^2}.\dfrac{3xy}{x+y}\)
\(=\dfrac{x-y}{2xy}\)
a) Ta có: \(\dfrac{4x+1}{3x}+\dfrac{2x-3}{6x}\)
\(=\dfrac{2\left(4x+1\right)}{6x}+\dfrac{2x-3}{6x}\)
\(=\dfrac{8x+2+2x-3}{6x}\)
\(=\dfrac{10x-1}{6x}\)
b) Ta có: \(\dfrac{x^2-y^2}{6x^2y^2}:\dfrac{x+y}{3xy}\)
\(=\dfrac{\left(x-y\right)\left(x+y\right)}{6x^2y^2}\cdot\dfrac{3xy}{x+y}\)
\(=\dfrac{x-y}{2xy}\)
Bài 1:
\(a,=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+2y^2}{2\left(x-y\right)\left(x+y\right)}=\dfrac{2y\left(x+y\right)}{2\left(x-y\right)\left(x+y\right)}=\dfrac{y}{x-y}\\ b,Sửa:\left(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x^2+3x}-\dfrac{x}{3x+9}\right)\\ =\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}:\dfrac{3x-9-x^2}{3x\left(x+3\right)}=\dfrac{x^2+3x+9}{x\left(x-3\right)\left(x+3\right)}\cdot\dfrac{-3x\left(x+3\right)}{x^2-3x+9}\\ =\dfrac{-3}{x-3}\)
Bài 2:
\(a,\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\\ b,\Leftrightarrow x^3+x^2+x+a=\left(x+1\right)\cdot a\left(x\right)\\ \text{Thay }x=-1\Leftrightarrow-1+1-1+a=0\Leftrightarrow a=1\)
\(a,\dfrac{2x}{y+x}+\dfrac{2y}{x+y}=\dfrac{2x}{x+y}+\dfrac{2y}{x+y}=\dfrac{2x+2y}{x+y}=\dfrac{2\left(x+y\right)}{x+y}=2\\ b,\dfrac{x}{x+1}+\dfrac{3x+1}{x^2-1}=\dfrac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\dfrac{3x+1}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2-x}{\left(x+1\right)\left(x-1\right)}+\dfrac{3x+1}{\left(x+1\right)\left(x-1\right)}=\dfrac{x^2-x+3x+1}{\left(x+1\right)\left(x-1\right)}=\dfrac{x^2+2x+1}{\left(x+1\right)\left(x-1\right)}=\dfrac{\left(x+1\right)^2}{\left(x+1\right)\left(x-1\right)}=\dfrac{x+1}{x-1}\)