K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
15 tháng 7 2021
cos20,sin65,cos28,sin40,cos88
Giải thích các bước giải:
đổi sin40=cos(90-40)=cos50
sin65=cos(90-65)=cos25
15 tháng 7 2021
1) \(\cot51^0=\tan39^0\)
\(\cot79^015'=\tan10^045'\)
Do đó: \(\cot79^015'< \tan13^0< \tan28^0< \cot51^0< \tan47^0\)
2) \(\cos62^0=\sin28^0\)
\(\cos63^041'=\sin26^019'\)
\(\cos87^0=\sin3^0\)
Do đó: \(\cos87^0< \cos63^041'< \cos62^0< \sin47^0< \sin50^0\)
3 tháng 8 2022
1: \(sin^6x+cos^6x+3sin^2x\cdot cos^2x\)
\(=\left(sin^2x+cos^2x\right)^2-3\cdot sin^2x\cdot cos^2x\cdot\left(sin^2x+cos^2x\right)+3\cdot sin^2x\cdot cos^2x\)
=1
2: \(sin^4x-cos^4x\)
\(=\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)\)
\(=1-2\cdot cos^2x\)
A,xem lại đề
B\(=sin^6x+cos^6x+3sin^2x.cos^2x\)
\(=\left(sin^2x\right)^3+3sin^2x.cos^2x\left(sin^2x+cos^2x\right)+\left(cos^2x\right)^3\)
\(=\left(sin^2+cos^2x\right)^3\)
\(=1\)
a) Sửa đề: \(A=\cot48^0\cdot\cot42^0+\tan60^0\)
Ta có: \(A=\cot48^0\cdot\cot42^0+\tan60^0\)
\(=\cot48^0\cdot\tan48^0+\tan60^0\)
\(=1+\sqrt{3}\)