Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2H=\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{49.51}\)
\(2H=\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+...+\dfrac{51-49}{49.51}\)
\(2H=\dfrac{3}{1.3}-\dfrac{1}{1.3}+\dfrac{5}{3.5}-\dfrac{3}{3.5}+...+\dfrac{51}{49.51}-\dfrac{49}{49.51}\)
\(2H=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{49}-\dfrac{1}{51}\)
\(2H=1-\dfrac{1}{51}\)
\(2H=\dfrac{50}{51}\)
\(H=\dfrac{25}{51}\)
\(F=\dfrac{49}{2.9}+\dfrac{49}{9.16}+............+\dfrac{49}{65.72}\)
\(\Leftrightarrow F=\dfrac{7^2}{2.9}+\dfrac{7^2}{9.16}+............+\dfrac{7^2}{65.72}\)
\(\Leftrightarrow F=7\left(\dfrac{7}{2.9}+\dfrac{7}{9.16}+.............+\dfrac{7}{65.72}\right)\)
\(\Leftrightarrow F=7\left(\dfrac{1}{2}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+...........+\dfrac{1}{65}-\dfrac{1}{75}\right)\)
\(\Leftrightarrow F=7\left(\dfrac{1}{2}-\dfrac{1}{72}\right)\)
\(\Leftrightarrow F=7.\dfrac{35}{72}=\dfrac{245}{72}\)
\(G=\dfrac{3}{1.3}+\dfrac{3}{3.5}+...........+\dfrac{3}{47.49}\)
\(\Leftrightarrow G=\dfrac{3.2}{1.3.2}+\dfrac{3.2}{3.5.2}+........+\dfrac{3.2}{47.49}\)
\(\Leftrightarrow G=\dfrac{3}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+..........+\dfrac{2}{47.49}\right)\)
\(\Leftrightarrow G=\dfrac{3}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+........+\dfrac{1}{47}-\dfrac{1}{49}\right)\)
\(\Leftrightarrow G=\dfrac{3}{2}\left(1-\dfrac{1}{49}\right)\)
\(\Leftrightarrow G=\dfrac{3}{2}.\dfrac{48}{49}=\dfrac{72}{49}\)
\(C=\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{45.47}\)
\(C=\frac{5}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{45}-\frac{1}{47}\right)\)
\(C=\frac{5}{2}.\left(1-\frac{1}{47}\right)\)
\(C=\frac{5}{2}.\frac{46}{47}\)
\(C=\frac{115}{47}\)
\(\Leftrightarrow\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{47}-\frac{1}{49}\right)=\frac{1}{x}\)
\(\Leftrightarrow\frac{1}{2}\left(1-\frac{1}{49}\right)=\frac{1}{x}\Rightarrow x=\frac{49}{24}\)
\(\frac{1}{2}.\left(1-\frac{1}{3}\right)+\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}\right)+...+\frac{1}{2}.\left(\frac{1}{47}-\frac{1}{49}\right)=\frac{1}{x}\)
\(\frac{1}{2}.\left(1-\frac{1}{49}\right)=\frac{1}{x}\)
\(\frac{24}{49}=\frac{1}{x}\)\(\Rightarrow x=\frac{49}{24}\)
\(=3.\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{47.49}\right)\)
\(=3.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{47}-\dfrac{1}{49}\right)\)
\(=3.\left(\dfrac{1}{3}-\dfrac{1}{49}\right)\)
\(=3.\dfrac{46}{147}\)
\(=\dfrac{46}{49}\)
\(\dfrac{3}{3.5}+\dfrac{3}{5.7}+...+\dfrac{3}{47.49}\)
=\(\dfrac{3}{2}.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{47}-\dfrac{1}{49}\right)\)
=\(\dfrac{3}{2}.\left(\dfrac{1}{3}-\dfrac{1}{49}\right)\)
=\(\dfrac{3}{2}.\dfrac{46}{147}\)
=\(\dfrac{23}{49}\)
\(A=1.3+3.5+5.7+...+45.47+47.49\)
\(A=\left(1.49\right)+\left(2.3\right)+\left(2.5\right)+\left(2.7\right)+.....+\left(2.47\right)\)
\(A=49+2.\left(3+5+7+....+47\right)\)
Bây giờ ta phải tìm SSH của :
\(3+7+...+47\)
Vậy SSH của tổng đó là :
(47-3):2+1=23 (SSH)
=> \(A=49+2.\left(\frac{\left(47+3\right).23}{2}\right)\)
\(A=49+2.575\)
\(A=49+1150\)
\(A=1199\)
Dạng này lầm đầu gặp
\(6A=1.3.6+3.5.6+5.6.7+......+47.49.6=3+1.3.5+3.5.\left(7-1\right)+5.7.\left(9-3\right)+.....+47.49.\left(51-45\right)=3+1.3.5-1.3.5+3.5.7-......+47.49.51-45.47.49=47.49.51+3=3+141423=141426\Rightarrow A=23571\)