Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{101+100+99+98+..+3+2+1}{101-100+99-98+..+3-2+1}=\frac{101\times\frac{102}{2}}{1+1+..+1}=\frac{101\times102}{2\times51}=101\)
\(B=\frac{423134.846267-423133}{423133.846267+423134}=\frac{423134^2+423134.423133-423133}{423133^2+423133.423134+423134}=\frac{423134^2+423133^2}{423134^2+423133^2}=1\)
\(A=\frac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\)
\(A=\frac{\left(\frac{101-1}{1}+1\right)\left(\frac{101+1}{2}\right)}{\left(\frac{101-1}{2}+1\right)\left(\frac{101+1}{2}\right)-\left(\frac{100-2}{2}+1\right)\left(\frac{100+2}{2}\right)}=\frac{101.51}{51.51-50.51}\frac{101.51}{51}=101\)
C = \(\frac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\)
\(C=\frac{\left(101+1\right).101:2}{1+1+...+1+1}\)
\(C=\frac{5151}{51}\)
\(C=101\)
b) \(D=\frac{3737.43-4343.37}{2+4+6+...+100}\)
\(D=\frac{37.101.43-43.101.37}{2+4+6+...+100}\)
\(D=\frac{0}{2+4+6+...+100}\)
\(D=0\)