Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x^2+4\right)^2-4x\left(x^2+4\right)=0\)
\(=\left(x^2+4\right)\left(x^2+4-4x\right)=0\)
\(=\left(x^2+4\right)\left(x+2\right)^2=0\)
Mà \(x^2\ge0\Rightarrow x^2+4>0\)
\(\Rightarrow x+2=0\)
\(\Rightarrow x=-2\)
b) \(x^5-18x^3+81x=0\)
\(=\left(x^5-9x^3\right)-\left(9x^3-81x\right)=0\)
\(=x^3\left(x^2-9\right)-9x\left(x^2-9\right)=0\)
\(=\left(x^3-9x\right)\left(x^2-9\right)=0\)
\(=x\left(x^2-9\right)\left(x^2-9\right)=0\)
\(=x\left(x^2-9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2-9=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x\in\left\{-3;3\right\}\end{cases}}\)
a) (x2 + 4)2 - 4x(x2 + 4) = 0
(x2 + 4)(x2 + 4 - 4x) = 0
(x2 + 4)(x - 2)2 = 0
\(\Rightarrow\) x2 + 4 = 0 hoặc (x - 2)2 = 0
\(\Rightarrow\) x2 = - 4 hoặc x - 2 = 0
\(\Rightarrow\) x \(\in\) tập hợp rỗng hoặc x = 2
Vậy x = 2
b) x5 - 18x3 + 81x = 0
x(x4 - 18x2 + 81) = 0
x(x2 - 9) = 0
x(x - 3)(x + 3) = 0
\(\Rightarrow\) x = 0 hoặc x - 3 = 0 hoặc x + 3 = 0
\(\Rightarrow\) x = 0 hoặc x = 3 hoặc x = - 3
Vậy \(x\in\left\{0;3;-3\right\}\)
Phân tích đa thức thành nhân tử
a) 4x2-36x+56 = 4\(x^2\)-36x+81-25 = \(\left(2x\right)^2\)-2.2x.9+\(9^2\) - 25 = \(\left(2x-9\right)^2\)-\(5^2\) = ( 2x - 9 - 5 ).( 2x - 9 + 5 ) = ( 2x - 14 ).( 2x - 4 )
b ) x4+4x2 = \(x^2.\left(x^2+4\right)\)
c ) x4 + x2 +1 = \(x^2\left(x^2+2\right)\)
d) 64\(x^4+1\)=\(64\left(x^4+1\right)\)
e ) 81x4+1=\(81\left(x^4+1\right)\)
a) \(x^4+x^2+1\)
\(=x^2\left(x^2+1\right)+\left(x^2+1\right)-x^2\)
\(=\left(x^2+1\right)^2-x^2\)
\(=\left(x^2-x+1\right)\left(x^2+x+1\right)\)
b) \(\left(1+x\right)^2-4x\left(1-x^2\right)\)
\(=\left(1+x\right)^2-4x\left(1-x\right)\left(1+x\right)\)
\(=\left(1+x\right)\left[1+x-4x+4x^2\right]\)
\(=\left(1+x\right)\left[1-3x+4x^2\right]\)
a , \(81x^2y+18xy^2+27x^2y^2\)\(=9xy\left(9x+2y+3xy\right)\)
b. \(4x^3+x^2+x=x\left(4x^2+x+1\right)\)
c. \(x^6+y^6=\left(x^2\right)^3+\left(y^2\right)^3\)\(=\left(x^2+y^2\right)\left(x^4-x^2y^2+y^4\right)\)
d.
e. \(\left(x+y\right)^3-\left(x-3\right)^3\)\(=x^3+3x^2y+3xy^2+y^3-x^3+9x^2-27x-y^3\)
\(=3x^2y+3xy^2+9x^2-27x\)
\(=3x\left(xy+y^2+3x-9\right)\)
h. \(x^2+x+\frac{1}{4}=\)\(4x^2+4x+1=\left(2x+1\right)^2=\left(2x+1\right)\left(2x+1\right)\)
i.
\(a,\left(1+x^2\right)^2-4x\left(1-x^2\right)\\ =\left(1+x^2\right)^2-\left(\sqrt{4x\left(1-x^2\right)}\right)^2\\ =\left(1+x^2-\sqrt{4x\left(1-x^2\right)}\right)\left(1+x^2+\sqrt{4x\left(1-x^2\right)}\right)\)
\(b,\left(x^2-8\right)^2-36\\ =\left(x^2-8-6\right)\left(x^2-8+6\right)\\ =\left(x^2-14\right)\left(x^2-2\right)\)
Theo mk là trừ 36 nhé
a) 10x(x - y)2 - 5(x - y)3 = [10x - 5(x - y)](x - y)2 = (10x - 5x + y)(x - y)2 = (5x + y)(x - y)2
b) -x2 - 10x - 25 = -(x2 + 10x + 52) = -(x + 5)2
c) 64x6y4 - 81x2y2 = (8x3y2)2 - (9xy)2 = (8x3y2 + 9xy)(8x3y2 - 9xy)
d) x6 - y6 = (x3)2 - (y3)2 = (x3 - y3)(x3 + y3) = (x - y)(x2 + xy + y2)(x + y)(x2 - xy + y2)
e)1/8x3 - 3/4x2y + 3/2xy2 - y3 = (1/2x)3 - 3.(1/2x)2y + 3.1/2xy2 - y3 = (1/2x - y)3
f) (3x + 1)2 - (x - 1)2 = (3x + 1 + x - 1)(3x + 1 - x + 1) = 4x(2x + 2) = 8x(x + 1)
17) \(8x^3+27=\left(2x\right)^3+3^3=\left(2x+3\right)\left(4x^2-6x+9\right)\)
18) \(a^6-1=\left(a^3\right)^2-1=\left(a^3-1\right)\left(a^3+1\right)=\left(a-1\right)\left(a^2+a+1\right)\left(a+1\right)\left(a^2-a+1\right)\)
20) \(9x^4-81x^2=9\left(x^4-9x^2\right)=9x^2\left(x^2-9\right)=9x^2\left(x-3\right)\left(x+3\right)\)
17)
\(8x^3+27=\left(8x\right)^3+3^3=\left(8x+3\right)\left(64x^2-24x+9\right)\)
18)
\(a^6-1=\left(a^3\right)^2-1\)
\(=\left(a^3-1\right)\left(a^3+1\right)\)
\(=\left(a-1\right)\left(a^2-a+1\right)\left(a+1\right)\left(a^2+a+1\right)\)
19)
đề sao sao ý
20)
\(=\left(3x^2\right)^2-\left(9x\right)^2\)
\(=\left(3x^2-9x\right)\left(3x^2+9x\right)\)
\(=3x\left(x-9\right)3x\left(x+9\right)=9x^2\left(x-9\right)\left(x+9\right)\)
\(81x^3-27\)
\(=\left(\sqrt[3]{81}.x\right)^3-3^3\)
\(=\left(\sqrt[3]{81}.x-3\right)\left[\left(\sqrt[3]{81}.x\right)^2+\sqrt[3]{81}.x.3+9\right]\)
Tham khảo nhé~
a)4-x^2-4x=4-x^2-2x-2x=-2x-4-x*(x+2)=-2*(x+2)-x*(x+2)=(-2-x)*(x+2)=-(x+2)^2
b)81x^3-27=27*3*x^3-27=27(3*x^3-1)