$\left(x^3+6x^2+5y^3\right)-\left(-x^3-5x+7y^3\right)$...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2018

Bài 3: A=2018-|x+2019|. Vì |x+2019|\(\ge\)0 nên -|x+2019|\(\le\)0=>2018-|x+2019|\(\le\) 2. Vậy A có GTLN = 2 khi x+2019=0 hay x=-2019. B=-10-\(\left|2x-\dfrac{1}{1009}\right|\). Vì \(\left|2x-\dfrac{1}{1009}\right|\ge0\Rightarrow-\left|2x-\dfrac{1}{1009}\right|\le0\Rightarrow-10-\left|2x-\dfrac{1}{1009}\right|\le-10\). Vậy B có GTLN = -10 khi 2x-\(\dfrac{1}{1009}=0\) => \(2x=\dfrac{1}{1009}\Rightarrow x=\dfrac{1}{1009}:2=\dfrac{1}{2018}\)

29 tháng 7 2018

Bài 2: A=\(\left|5x+1\right|-\dfrac{3}{8}\). Vì \(\left|5x+1\right|\ge0\Rightarrow\left|5x+1\right|-\dfrac{3}{8}\ge\dfrac{-3}{8}\). Vậy A có GTNN = \(\dfrac{-3}{8}\) khi 5x+1= 0=> 5x= -1=> x = \(\dfrac{-1}{5}\). B=\(\left|2-\dfrac{1}{6}x\right|+0,25\) , vì \(\left|2-\dfrac{1}{6}x\right|\ge0\Rightarrow\left|2-\dfrac{1}{6}x\right|+0,25\ge0,25\) . Vậy B có GTNN = 0,25 khi \(2-\dfrac{1}{6}x=0\Rightarrow\dfrac{x}{6}=2\Rightarrow x=2.6=12\)

30 tháng 3 2017

cho vài k đi bà con ơi

a: =>-3/2+x-7=5-1/3x+4/15

=>4/3x=413/30

hay x=413/40

b: \(\Leftrightarrow5-\dfrac{3}{2}x=-\dfrac{22}{3}\cdot\dfrac{-11}{8}=\dfrac{121}{12}\)

=>3/2x=-61/12

hay x=-61/18

c: (3x+2)2+|3x+2y|=0

=>3x+2=0 và 3x=-2y

=>x=-2/3 và -2y=-2

=>(x,y)=(-2/3;1)

AH
Akai Haruma
Giáo viên
9 tháng 8 2021

1.

Do: $(x-3y)^2\geq 0; (2x-1)^4\geq 0$ với mọi $x,y\in\mathbb{R}$

$\Rightarrow A\geq 0+0+3=3$
Vậy $A_{\min}=3$. Giá trị này đạt tại $x-3y=2x-1=0$

$\Leftrightarrow x=\frac{1}{2}; y=\frac{1}{6}$

2.

$|x-2|\geq 0$

$|3x-2y|\geq 0$

$\Rightarrow B\geq 0+0-4=-4$

Vậy $B_{\min}=-4$

Giá trị này đạt tại $x-2=3x-2y=0\Leftrightarrow x=2; y=3$

 

AH
Akai Haruma
Giáo viên
9 tháng 8 2021

3.

$|x+1|\geq 0, \forall x\in\mathbb{R}$

$|y-3|\geq 0, \forall y\in\mathbb{R}$

$\Rightarrow |x+1|+|y-3|+2\geq 2$

$\Rightarrow \frac{1}{|x+1|+|y-3|+2}\leq \frac{1}{2}$

$\Rightarrow C\geq \frac{-4}{2}=-2$

Vậy $C_{\min}=-2$. Giá trị này đạt tại $x+1=y-3=0$

$\Leftrightarrow x=-1; y=3$

4. Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$|x-5|+|x-1|=|5-x|+|x-1|\geq |5-x+x-1|=4$

$\Rightarrow D=|x-5|+|x-1|+7\geq 11$

Vậy $D_{\min}=11$. Giá trị này đạt tại $(5-x)(x-1)\geq 0$

$\Leftrightarrow 5\geq x\geq 1$

17 tháng 1 2019

Mk chỉ làm một ý các câu còn lại bn làm tương tự nha:

a) (x+5).(y-3)=0

Vì x,y thuộc Z nên x+5 thuộc z và y-3 thuộc Z

Vì (x+5).(y-3)=0

=> x+5=0 hoặc y-3=0

(+) x+5=0

x=0-5

x=-5

(+) y-3=0

y=0+3

y=3

Vậy x=-5 và y thuộc Z

hoặc y=3 và x thuộc Z

Nhớ tick cho mk nhé Kim Taehyungie.Dạng này mấy hôm trước mk mới hok nên đúng 100% đấy.Cô mk dạy y hệt như thế này lunhiha

17 tháng 1 2019

Riên cái câu a đấy thì khác vs 3 câu còn lại nhé nên mk sẽ làm giúp cậu 1 câu còn 2 câu cậu tự làm như câu này nhé:

B) (x-7).(2+y)=13

Vì x,y thuộc Z nên x-7 thuộc Z và 2+y thuộc Z

Vì (x-7).(2+y)=13

=> x-7 thuộc Ư(13)

Ta có Ư(13)={1;13;-1;-13) (tại sao lại có -1 và -13 vì x thuộc z nhé)

Do đó: x-7 thuộc{1;13;-1;-13}

Ta có bảng sau:Bn tự kẻ ra và làm nhé.Cứ thay x vào rồi tìm như bình thường nhé

7 tháng 6 2019

\(a,\)\(\left(3x-2\right)\left(2y-3\right)=1\)

\(\Rightarrow\)Trường hợp 1 : 

\(\hept{\begin{cases}3x-2=1\\2y-3=1\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)

\(\Rightarrow\)Trường hợp 2 :

\(\hept{\begin{cases}3x-2=-1\\2y-3=-1\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\\y=1\end{cases}}}\)

Vậy ....

7 tháng 6 2019

#)Giải :

\(b,\left(x+1\right).\left(2y-1\right)=12\)

\(\left(2y-2\right)y-x-13=0\)

\(2\left(x+1\right)=0\)

\(2x=-2\Rightarrow x=-1\)

\(2y-1=0\Rightarrow2y=1\Rightarrow y=\frac{1}{2}\)