Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



(9/16)^2016.(16/9)^2015.4/3
9/16.(9/16)^2015.(16/9)^2015.4/3
9/16.(9/16.16/9)^2015.4/3
9/16.1^2015.4/3
9/16.1.4/3
=>9/16.4/3=3/4

\(\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot...\cdot\frac{9999}{10000}\)
\(=\frac{1\cdot3}{2^2}\cdot\frac{2\cdot4}{3^2}\cdot\frac{3\cdot5}{4^2}\cdot...\cdot\frac{99\cdot101}{100^2}\)
\(=\frac{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)...\left(99\cdot101\right)}{2^2\cdot3^2\cdot4^2\cdot...\cdot100^2}\)
\(=\frac{\left(1\cdot2\cdot3\cdot...\cdot99\right)\left(3\cdot4\cdot5\cdot101\right)}{\left(2\cdot3\cdot4\cdot...\cdot100\right)\left(2\cdot3\cdot4\cdot...\cdot100\right)}\)
\(=2\cdot101=202\)
\(= \frac{1 \cdot 3}{2^{2}} \cdot \frac{2 \cdot 4}{3^{2}} \cdot \frac{3 \cdot 5}{4^{2}} \cdot . . . \cdot \frac{99 \cdot 101}{10 0^{2}}\)
\(= \frac{\left(\right. 1 \cdot 3 \left.\right) \left(\right. 2 \cdot 4 \left.\right) \left(\right. 3 \cdot 5 \left.\right) . . . \left(\right. 99 \cdot 101 \left.\right)}{2^{2} \cdot 3^{2} \cdot 4^{2} \cdot . . . \cdot 10 0^{2}}\)
\(= \frac{\left(\right. 1 \cdot 2 \cdot 3 \cdot . . . \cdot 99 \left.\right) \left(\right. 3 \cdot 4 \cdot 5 \cdot 101 \left.\right)}{\left(\right. 2 \cdot 3 \cdot 4 \cdot . . . \cdot 100 \left.\right) \left(\right. 2 \cdot 3 \cdot 4 \cdot . . . \cdot 100 \left.\right)}\)
\(= 2 \cdot 101 = 202\)

\(\frac{\frac{2}{3}+\frac{2}{5}+\frac{2}{7}+\frac{2}{9}}{\frac{11}{3}+\frac{11}{5}+\frac{11}{7}+\frac{11}{9}}=\frac{2\left(\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{9}\right)}{11\left(\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{9}\right)}=\frac{2}{11}\)
\(\left(\frac{9}{16}\right)^{2016}.\left(\frac{16}{9}\right)^{2015}.\frac{4}{3}\)
\(=\left(\frac{9}{16}\right)^{2015}.\left(\frac{16}{9}\right)^{2015}.\frac{9}{16}.\frac{4}{3}\)
\(=\left(\frac{9}{16}.\frac{16}{9}\right)^{2015}.\frac{3}{4}\)
\(=\frac{1.3}{4}=\frac{3}{4}\)