Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-1\right)^3+3\left(x+1\right)^2=\left(x^2-2x+4\right)\)
\(\Leftrightarrow x^3+9x+2=x^3+8\)
\(\Leftrightarrow x^3+9x=x^3+8-2\)
\(\Leftrightarrow x^3+9x=x^3+6\)
\(\Leftrightarrow x^3+9x=x^3+6x-x^3\)
\(\Leftrightarrow\frac{2}{3}\)
b) \(x^2-4=8\left(x-2\right)\)
\(\Leftrightarrow x^2-4=8x-16\)
\(\Leftrightarrow x^4-4=8x-16+16\)
\(\Leftrightarrow x^2+12=8x\)
\(\Leftrightarrow x^2+12=8x-8x\)
\(\Leftrightarrow x^2-8x+12=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=6\end{cases}}\)
a) 16(4x+5)2 - 25(2x+2)2
\(=\left[4\left(4x+5\right)\right]^2-\left[5\left(2x+2\right)\right]^2\)
\(=\left[4\left(4x+5\right)+5\left(2x+2\right)\right]\left[4\left(4x+5\right)-5\left(2x+2\right)\right]\)
\(=\left(16x+20+10x+10\right)\left(16x+20-10x-10\right)\)
\(=\left(26x+30\right)\left(6x+10\right)\)
\(b,\left(x-y+4\right)^2-\left(2x+3y-1\right)^2\)
\(=\left(x-y+4+2x+3y-1\right)\left(x-y+4-2x-2y+1\right)\)
\(=\left(3x+2y+3\right)\left(-x-3y+5\right)\)
\(c,\left(x+1\right)^4-\left(x-1\right)^4\)
\(=\left(x+1\right)^{2^2}-\left(x-1\right)^{2^2}\)
\(=\left[\left(x+1\right)^2+\left(x-1\right)^2\right]\left[\left(x+1\right)^2-\left(x-1\right)^2\right]\)
\(=\left(x^2+2x+1+x^2-2x+1\right)\left[\left(x+1+x-1\right)\left(x+1-x+1\right)\right]\)
\(=\left(2x^2+2\right)2x.2\)
\(=4x.2\left(x^2+1\right)\)
\(=8x\left(x^2+1\right)\)
a, \(x^2-25-\left(x+5\right)=0\)
\(\Rightarrow x^2-5^2-\left(x+5\right)=0\)
\(\Rightarrow\left(x-5\right)\times\left(x+5\right)-\left(x+5\right)=0\)
\(\Rightarrow\left(x+5\right)\times\left(x-5-1\right)=0\)
\(\Rightarrow\left(x+5\right)\times\left(x-6\right)=0\)
\(\Rightarrow\hept{\begin{cases}x+5=0\\x-6=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=0-5=\left(-5\right)\\x=0+6=6\end{cases}}\)
b, \(\left(2x-1\right)^2-\left(4x^2-1\right)=0\)
\(\Rightarrow\left(2x-1\right)^2-\left(\left(2x\right)^2-1^2\right)=0\)
\(\Rightarrow\left(2x-1\right)^2-\left(2x-1\right)\times\left(2x+1\right)=0\)
\(\Rightarrow\left(2x-1\right)\times\left(2x-1-\left(2x+1\right)\right)=0\)
\(\Rightarrow\left(2x-1\right)\times\left(2x-1-2x-1\right)=0\)
\(\Rightarrow\left(2x-1\right)\times\left(-2\right)=0\)\(\Rightarrow\left(-4x\right)+2=0\)
\(\Rightarrow\left(-4x\right)=0-2=-2\)
\(\Rightarrow x=\frac{-2}{-4}=\frac{1}{2}\)
c, \(x^2\times\left(x^2+4\right)-x^2-4=0\)
\(\Rightarrow x^2\times\left(x^2+4\right)-\left(x^2+4\right)=0\)
\(\Rightarrow\left(x^2-1\right)\times\left(x^2+4\right)=0\)
\(\Rightarrow\hept{\begin{cases}x^2-1=0\\x^2+4=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x^2=1\\x^2=\left(-4\right)\end{cases}}\)
\(\Rightarrow x=1\)
\(a,\left(a^3-b^3\right)+\left(a-b\right)^2\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)^2\)
\(=\left(a-b\right)\left(a^2+ab+b^2+a-b\right)\)
\(b,\left(x^2+1\right)^2-4x^2\)
\(=x^4+2x^2+1-4x^2\)
\(=x^4-2x^2+1\)
\(\left(x^2-1\right)^2\)
\(c\left(y^3+8\right)+\left(y^2-4\right)\)
\(=\left(y+2\right)\left(y^2-8y+4\right)+\left(y-2\right)\left(y+2\right)\)
\(=\left(y+2\right)\left(y^2-8y+4+y-2\right)\)
\(=\left(y+2\right)\left(y^2-7y+2\right)\)
a) ( a3 - b3) + ( a - b)2
= (a-b) (a2 + ab + b2 ) + (a-b)2
= (a-b) (a2 + ab + b2 +a -b )
hok tốt
Ta có:
a) A = 2018 x 2020 = (2019 - 1) x (2019 + 1)
Áp dụng hằng đẳng thức thứ ba ta có:
A = 208 x 2020 = \(2019^2-1^2=2019^2-1\)
Vì \(2019^2-1< 2019^2\)
\(\Rightarrow\)A < B
b) A = \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1^2\right)\left(2^2+1^2\right)\left(2^4+1^2\right)\left(2^8+1^2\right)\left(2^{16}+1^2\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1\)
Vì \(2^{32}-1< 2^{32}\)
\(\Rightarrow\)A < B
a) Áp dụng hàng đăng thức (a - b) (a + b) = a2 - b2
Ta có : A = 2018.2020 = (2019 - 1) (2019 + 1) = 20192 - 1
Mà B = 20192
Nên A < B
b: \(\Leftrightarrow2\left(x^2-2x+1\right)-3x^2+5x-1=0\)
\(\Leftrightarrow2x^2-4x+2-3x^2+5x-1=0\)
\(\Leftrightarrow-x^2+x+1=0\)
\(\Leftrightarrow x^2-x-1=0\)
\(\text{Δ}=\left(-1\right)^2-4\cdot1\cdot\left(-1\right)=5\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{1-\sqrt{5}}{2}\\x_2=\dfrac{1+\sqrt{5}}{2}\end{matrix}\right.\)
c: \(\Leftrightarrow x^2+6x+9-1-\left(x^2+8x-4x-32\right)=0\)
\(\Leftrightarrow x^2+6x+8-x^2-4x+32=0\)
=>2x+40=0
hay x=-20
d: \(\Leftrightarrow3x^2+12x+12+4x^2-4x+1-7\left(x^2-9\right)=36\)
\(\Leftrightarrow7x^2+8x+13-7x^2+63=36\)
=>8x+76=36
hay x=-5
(22 - 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1) = (24 - 1)(24 + 1)(28 + 1)(216 + 1) = (28 - 1)(28 + 1)(216 + 1) = (216 - 1)(216 + 1) = 232 - 1