Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)A=1+2+22+...+2100
=>2A=2+22+23+...2101
=>2A-A=(2+22+23+...+2101)-(1+2+22+...+2100)
=>A=2101-1
b)B=3+32+33+...+3100
=>3B=32+33+...+3101
=>3B-B=(32+33+...+3101)-(3+32+...3100)
=>2B-B=3101-3
=>B=(3101-3):2
c)C=1+2+4+8+16+...+8192
=>C=1+2+22+23+...213
=>2C=2+22+23+...+214
=>2C-C=(2+22+...+214)-(2+22+...+213)
=>C=214-2
d)D=4+42+43+...+4n
=>4D=42+43+...+4n+1
=>4D-D=(42+43+...+4n+1)-(4+42+...+4n)
=>3D=4n+1-4
=>D=(4n+1-4):3
\(D=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)
\(=-\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)....\left(1-\frac{1}{100^2}\right)\)
\(=-\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}.....\frac{100^2-1}{100^2}\)
\(=-\left(\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}....\frac{99.101}{100^2}\right)\)
\(=-\left(\frac{1.2.3...99}{2.3.4...100}.\frac{3.4.5...101}{2.3.4....100}\right)\)
\(=-\left(\frac{1}{100}.\frac{101}{2}\right)\)
\(=-\frac{101}{200}\)
\(D=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\cdot\cdot\cdot\left(\frac{1}{100^2}-1\right)\)(có 50 số hạng)
\(\Rightarrow D=\left(\frac{2^2-1}{2^2}\right)\left(\frac{3^2-1}{3^2}\right)\cdot\cdot\cdot\left(\frac{100^2-1}{100^2}\right)\)
\(\Rightarrow D=\frac{1\cdot3}{2^2}\cdot\frac{2\cdot4}{3^2}\cdot\cdot\cdot\frac{99\cdot101}{100^2}\)
\(\Rightarrow D=\frac{101}{2\cdot100}=\frac{101}{200}\)
\(=\left[\left(-1\right)^1\cdot\left(-1\right)^3...\cdot\left(-1\right)^{99}\right]\cdot\left[\left(-1\right)^2\cdot...\cdot\left(-1\right)^{100}\right]\)
\(=\left[\left(-1\right)^1\cdot...\cdot\left(-1\right)^{99}\right]\cdot1\)
\(=\left[\left(-1\right)^1\cdot...\cdot\left(-1\right)^{99}\right]\)
Ta có : \(\frac{99-1}{2}+1=50\) số hạng (-1)
=> Biểu thức trên \(=1\).
a) Ta có: \(A=1+3+3^2+...+3^{99}+3^{100}\)
=> \(3A=3+3^2+3^3+...+3^{100}+3^{101}\)
=> \(3A-A=\left(3+3^2+...+3^{101}\right)-\left(1+3+...+3^{100}\right)\)
<=> \(2A=3^{101}-1\)
=> \(A=\frac{3^{101}-1}{2}\)
b) Ta có: \(B=1+4+4^2+...+4^{100}\)
=> \(4B=4+4^2+4^3+...+4^{101}\)
=> \(4B-B=\left(4+4^2+...+4^{101}\right)-\left(1+4+...+4^{100}\right)\)
<=> \(3B=4^{101}-1\)
=> \(B=\frac{4^{101}-1}{3}\)
A = (3101 - 1) : 2
B = sai đề
C = sai đề
D = (3151 - 3100) : 2
đặt A= 1 + 4^2 + 4^3 + .... +4^100
=> 4A = 4+4^3 + 4^4 + .... +4^101
=>4A - A = (4+4^3 + 4^4 + .... +4^101) - (1 + 4^2 + 4^3 + .... +4^100)
=> 3A = (3+4^101) - 4^2
=> A = [(3+4^101) - 4^2 ] / 3