Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=1.4.2.5.....98.101/2.3.3.4.....99.100
=(1.2.3.....97.98)(4.5.....100.101)/(2.3.....99)(3.4.....100)
=1.101/99.3
=101/297
Bạn tuấn anh có thể giải thích rõ cho mik vì sao bạn có thể ra dược bước 1ko?
1/2! +2/3! +3/4! +... + 99/100!
= (1/1! -1/2!) + (1/2! - 1/3!) + (1/3! -1/4!) + .... + (1/99! -1/100!)
=1 - 1/100! <1
1/2! +2/3! +3/4! +... + 99/100!
= (1/1! -1/2!) + (1/2! - 1/3!) + (1/3! -1/4!) + .... + (1/99! -1/100!)
=1 - 1/100! <1
Ta có: \(A=1+2+2^2+2^3+...+2^{99}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{100}\)
\(\Rightarrow2A-A=A=\left(2+2^2+2^3+...+2^{100}\right)-\left(1+2+2^2+...+2^{99}\right)=2^{100}-1\)
Vậy \(A=2^{100}-1\)
1+2-3+4+5+6-7-8+9+10+........-99-100+101
=1+(2-3+4+5)+.....+(98-99-100+101)
=1+0+0+0+...+0
=1
TICK CHO MK NHA
hình như bạn lm sai rồi, bài này ko giống n~ bài khác đâu
a) Mỗi biểu thức M và N đều có 50 thừa số
Ta thấy \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};\frac{5}{6}< \frac{6}{7};...;\frac{99}{100}< \frac{100}{101}\)
\(\Rightarrow\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)
Vậy \(M< N\)
b) \(M.N=\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\right).\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}...\frac{99}{100}.\frac{100}{101}\)
\(=\frac{1}{101}\)
c) Vì \(M< N\)nên \(M.M< M.N\)hay \(M.M< \frac{1}{101}< \frac{1}{100}\). Do đó \(M.M< \frac{1}{100}=\frac{1}{10}.\frac{1}{10}\)suy ra \(M< \frac{1}{10}\)( Vì \(M>0\))
Đặt A=1.2+2.3+...+99.100
3A=1.2.3+2.3.3+...+99.100.3
=1.2.(3-0)+2.3(4-1)+....+99.100(101-98)
=1.2.3-0.1.2+2.3.4-1.2.3+...+99.100.101-98.99.100
=99.100.101-0.1.2
=99.100.101
=>\(A=\frac{99.100.101}{3}=333300\)
Đặt \(A=1.2+2.3+3.4+4.5+...+99.100\)\(\Rightarrow3.A=1.2.3+2.3.3+3.4.3+4.5.3+...+99.100.3\)\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+4.5.\left(6-3\right)+...+99.100.\left(101-98\right)\)
\(=1.2.3+2.3.4-1.2.3+3.4.-2.3.4+4.5.6+3.4.5+...+\)\(99.100.101-98.99.100\)
\(=99.100.101\)
\(=999900\Rightarrow B=999900\div3=333300\)
Chưa chắc lắm đâu nha !