Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{25\left(x-3\right)}-10\sqrt{\dfrac{x-3}{25}}-1=3+\sqrt{x-3}\left(đk:x\ge3\right)\)
\(\Leftrightarrow5\sqrt{x-3}-10.\dfrac{1}{5}\sqrt{x-3}-1=3+\sqrt{x-3}\)
\(\Leftrightarrow2\sqrt{x-3}=4\Leftrightarrow\sqrt{x-3}=2\)
\(\Leftrightarrow x-3=4\Leftrightarrow x=7\)
Ta có: \(\sqrt{25\left(x-3\right)}-10\sqrt{\dfrac{x-3}{25}}-1=3+\sqrt{x-3}\)
\(\Leftrightarrow5\sqrt{x-3}-2\sqrt{x-3}-\sqrt{x-3}=4\)
\(\Leftrightarrow2\sqrt{x-3}=4\)
\(\Leftrightarrow x-3=4\)
hay x=7
\(\left(\sqrt{4,5}-\frac{1}{2}.\sqrt{72}+5\sqrt{\frac{1}{2}}\right).\left(42\sqrt{\frac{25}{6}}-10\sqrt{\frac{3}{2}}-12\sqrt{\frac{98}{3}}\right)\)
=\(\left(\frac{3\sqrt{2}}{2}-3\sqrt{2}+\frac{5\sqrt{2}}{2}\right).\left(35\sqrt{6}-5\sqrt{6}-28\sqrt{6}\right)\)
=\(\left(\frac{3\sqrt{2}-6\sqrt{2}+5\sqrt{2}}{2}\right).2\sqrt{6}\)
=\(2\sqrt{2}.\sqrt{6}=4\sqrt{3}\)
a: \(=\sqrt[3]{216}-\sqrt[3]{-1331}=6-\left(-11\right)=17\)
b: Đặt \(A=\sqrt[3]{10\sqrt{5}-25}-\sqrt[3]{10\sqrt{5}+25}\)
\(\Leftrightarrow A^3=10\sqrt{5}-25-10\sqrt{5}-25+3\cdot A\cdot\sqrt{-125}\)
\(\Leftrightarrow A^3=-50-15A\)
\(\Leftrightarrow A^3+15A+50=0\)
hay \(A\simeq-2.405\)
Ta có:
\(x=1+\sqrt[3]{5}+\sqrt[3]{25}\)
\(\Rightarrow x^3=\left(1+\sqrt[3]{5}+\sqrt[3]{25}\right)^3=61+33\sqrt[3]{5}+21\sqrt[3]{25}\)
\(=\left(33+21\sqrt[3]{5}+9\sqrt[3]{25}\right)+\left(12+12\sqrt[3]{5}+12\sqrt[3]{25}\right)+16=3x^2+12x+16\)
\(\Rightarrow P=\left(x^3-3x^2-12x-15\right)^{10}+2018\)
\(=\left(3x^2+12x+16-3x^2-12x-15\right)^{10}+2018=2019\)
\(M=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{25\sqrt{24}+24\sqrt{25}}\\ =\dfrac{1}{\sqrt{2}\left(\sqrt{2}+1\right)}+\dfrac{1}{\sqrt{2.3}\left(\sqrt{3}+\sqrt{2}\right)}+....+\dfrac{1}{\sqrt{24.25}\left(\sqrt{25}+\sqrt{24}\right)}\\ =\dfrac{\sqrt{2}-1}{\sqrt{2}}+\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{2}.\sqrt{3}}+...+\dfrac{\sqrt{25}-\sqrt{24}}{\sqrt{25}.\sqrt{24}}\\ =1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+....+\dfrac{1}{\sqrt{24}}-\dfrac{1}{\sqrt{25}}\\ =1-\dfrac{1}{\sqrt{25}}=1-\dfrac{1}{5}=\dfrac{4}{5}\)
\(=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{24}}-\dfrac{1}{\sqrt{25}}\)
=1-1/5=4/5
Ý bạn là tính ra dạng thập phân hay gì nhỉ? Còn nếu không thì tổng này đã rất rút gọn rồi.