
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Bài 2:
Qua B, kẻ tia BD nằm giữa hai tia BA và BC sao cho BD//Ax//Cz
ta có: BD//Ax
=>\(\hat{xAB}+\hat{ABD}=180^0\) (hai góc trong cùng phía)
=>\(\hat{ABD}=180^0-125^0=55^0\)
Ta có: BD//Cz
=>\(\hat{DBC}+\hat{BCz}=180^0\) (hai góc trong cùng phía)
=>\(\hat{DBC}=180^0-130^0=50^0\)
Ta có: tia BD nằm giữa hai tia BA và BC
=>\(\hat{ABC}=\hat{DBA}+\hat{DBC}\)
=>\(\hat{ABC}=55^0+50^0=105^0\)
Bài 3:
Ax//yy'
=>\(\hat{xAB}=\hat{yBA}\) (hai góc so le trong)
=>\(\hat{yBA}=50^0\)
Cz//yy'
=>\(\hat{yBC}=\hat{zCB}\) (hai góc so le trong)
=>\(\hat{yBC}=40^0\)
Ta có: tia By nằm giữa hai tia BA và BC
=>\(\hat{ABC}=\hat{yBA}+\hat{yBC}=40^0+50^0=90^0\)
Bài 4:
Qua B, kẻ tia BD nằm giữa hai tia BA và BC sao cho BD//Ax//Cz
BD//Ax
=>\(\hat{xAB}+\hat{ABD}=180^0\) (hai góc trong cùng phía)
=>\(\hat{ABD}=180^0-110^0=70^0\)
ta có; tia BD nằm giữa hai tia BA và BC
=>\(\hat{DBA}+\hat{DBC}=\hat{ABC}\)
=>\(\hat{DBC}=100^0-70^0=30^0\)
Ta có: \(\hat{DBC}=\hat{zCB}\left(=30^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên BD//Cz
Ta có: BD//Ax
BD//Cz
Do đó: Ax//Cz

a: a//b
=>\(\hat{A_1}=\hat{B_3}\) (hai góc so le trong)
mà \(\hat{A_1}=65^0\)
nên \(\hat{B_3}=65^0\)
b: Ta có: \(\hat{B}_3+\hat{B_2}=180^0\) (hai góc kề bù)
=>\(\hat{B_2}=180^0-65^0=115^0\)
Giải:
a; \(\hat{A_1}\) = \(65^0\) (gt)
\(\hat{A_1}\) = \(\hat{A_3}\) = 65\(^0\)(đối đỉnh)
\(\hat{A_3}\) = \(\hat{B_3}\) = \(65^0\) (slt)
b; \(\hat{B_2}\) + \(\hat{B_3}\) = 180\(^0\) (hai góc kề bù)
\(\hat{B_2}\) = 180\(^0\) - \(\hat{B_3}\)
\(\hat{B_2}\) = 180\(^0\) - 65\(^0\) = 115\(^0\)
Vậy a; \(\hat{B}_3\) = 65\(^0\)
b; \(\hat{B_2}\) = 115\(^0\)

Bài 1:
1: xx'⊥AD
yy'⊥AD
Do đó: xx'//yy'
2:
Cách 1:
xx'//yy'
=>\(\hat{C_1}=\hat{x^{\prime}BC}\) (hai góc so le trong)
=>\(\hat{C_1}=70^0\)
Cách 2:
ta có: \(\hat{x^{\prime}BC}+\hat{xBC}=180^0\) (hai góc kề bù)
=>\(\hat{xBC}=180^0-70^0=110^0\)
Ta có: xx'//yy'
=>\(\hat{xBC}+\hat{C_1}=180^0\) (hai góc trong cùng phía)
=>\(\hat{C_1}=180^0-110^0=70^0\)
Bài 2:
a: \(\hat{ABC}=\hat{n^{\prime}CB}\left(=80^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên mm'//nn'
b: Cách 1:
ta có: \(\hat{xAm}+\hat{mAD}=180^0\) (hai góc kề bù)
=>\(\hat{mAD}=180^0-70^0=110^0\)
Ta có: AB//CD
=>\(\hat{mAD}=\hat{D_1}\) (hai góc so le trong)
=>\(\hat{D_1}=110^0\)
Cách 2:
Ta có: \(\hat{xAm}=\hat{BAD}\) (hai góc đối đỉnh)
mà \(\hat{xAm}=70^0\)
nên \(\hat{BAD}=70^0\)
Ta có: AB//CD
=>\(\hat{BAD}+\hat{D_1}=180^0\) (hai góc trong cùng phía)
=>\(\hat{D_1}=180^0-70^0=110^0\)

Bài 1:
a: \(A\left(x\right)=5x^4-7x^2-3x-6x^2+11x-30\)
\(=5x^4-7x^2-6x^2-3x+11x-30\)
\(=5x^4-13x^2+8x-30\)
\(B=-11x^3+5x-10+5x^4-2+20x^3-34x\)
\(=5x^4+20x^3-11x^3+5x-34x-2-10\)
\(=5x^4+9x^3-29x-12\)
b: A(x)+B(x)
\(=5x^4-13x^2+8x-30+5x^4+9x^3-29x-12\)
\(=10x^4-4x^3-21x-42\)
A(x)-B(x)
\(=5x^4-13x^2+8x-30-5x^4-9x^3+29x+12\)
\(=-9x^3-13x^2+37x-18\)
Bài 2:
a: \(M=2x^2+5x-12\)
Bậc là 2
Hệ số cao nhất là 2
Hệ số tự do là -12
b: M+N
\(=2x^2+5x-12+x^2-8x-1=3x^2-3x-13\)
c: P(2x-3)=M
=>\(P=\frac{2x^2+5x-12}{2x-3}=\frac{2x^2-3x+8x-12}{2x-3}\)
\(=\frac{x\left(2x-3\right)+4\left(2x-3\right)}{2x-3}\)
=x+4
Bài 1:
`a)(2x+1):3+2=5`
`(2x+1):3=5-2`
`(2x+1):3=3`
`2x+1=3*3`
`2x+1=9`
`2x=9-1`
`2x=8`
`x=8/2`
`x=4`
Vậy: `...`
`b)(2x)/3=3x-1`
`2x=3(3x-1)`
`2x=9x-3`
`9x-2x=3`
`7x=3`
`x=3/7`
Vậy: `...`
`c)(x+5)/15+(x+6)/14=(x+7)/13+(x+8)/12`
`((x+5)/15+1)+((x+6)/14+1)=((x+7)/13+1)+((x+8)/12+1)`
`(x+20)/15+(x+20)/14=(x+20)/13+(x+20)/12`
`(x+20)/15+(x+20)/14-(x+20)/13-(x+20)/12=0`
`(x+20)(1/15+1/14-1/13-1/12)=0`
`(x+20)=0`
`x=-20`
Vậy: `...`
Bài 4:
\(\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+\cdots+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)
=>\(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\cdots+\frac{3}{x\left(x+3\right)}=\frac{101}{1540}\cdot3=\frac{303}{1540}\)
=>\(\frac15-\frac18+\frac18-\frac{1}{11}+\cdots+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)
=>\(\frac15-\frac{1}{x+3}=\frac{303}{1540}\)
=>\(\frac{1}{x+3}=\frac15-\frac{303}{1540}=\frac{1}{308}\)
=>x+3=308
=>x=305
Bài 3:
a: (x-2)(y+1)=3
=>(x-2;y+1)∈{(1;3);(3;1);(-1;-3);(-3;-1)}
=>(x;y)∈{(3;2);(5;0);(1;-4);(-1;-2)}
b: xy+x+y+1=5
=>x(y+1)+(y+1)=5
=>(x+1)(y+1)=5
=>(x+1;y+1)∈{(1;5);(5;1);(-1;-5);(-5;-1)}
=>(x;y)∈{(0;4);(4;0);(-2;-6);(-6;-2)}
c: xy+3y+x=2
=>y(x+3)+x+3=2+3
=>(x+3)(y+1)=5
=>(x+3;y+1)∈{(1;5);(5;1);(-1;-5);(-5;-1)}
=>(x;y)∈{(-2;4);(2;0);(-4;-6);(-8;-2)}
Bài 2:
a: \(\frac{x-2}{-2}=\frac{3x+1}{3}\)
=>-2(3x+1)=3(x-2)
=>-6x-2=3x-6
=>-6x-3x=-6+2
=>-9x=-4
=>\(x=\frac49\)
b: \(\frac{x-5}{15}+\frac{x-7}{13}=\frac{x-9}{11}+\frac{x-11}{9}\)
=>\(\left(\frac{x-5}{15}-1\right)+\left(\frac{x-7}{13}-1\right)=\left(\frac{x-9}{11}-1\right)+\left(\frac{x-11}{9}-1\right)\)
=>\(\frac{x-20}{15}+\frac{x-20}{13}=\frac{x-20}{11}+\frac{x-20}{9}\)
=>x-20=0
=>x=20
c: \(\frac{x+9}{11}+\frac{x+12}{8}+\frac{x+10}{5}=-4\)
=>\(\left(\frac{x+9}{11}+1\right)+\left(\frac{x+12}{8}+1\right)+\left(\frac{x+10}{5}+2\right)=-4+4=0\)
=>\(\frac{x+20}{11}+\frac{x+20}{8}+\frac{x+20}{5}=0\)
=>x+20=0
=>x=-20
d: \(\left(2^{3x+2}-2\right):6+22=\frac{1}{\left(-3\right)^2}\cdot3^4\)
=>\(\left(2^{3x+2}-2\right):6+22=\frac{81}{9}=9\)
=>\(2^{3x+2}-2=\left(9-22\right)\cdot6=-13\cdot6=-78\)
=>\(2^{3x+2}=-78+2=-76\) (vô lý)
=>x∈∅