K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

a: \(\left(\frac{9}{25}-2^2\right):\left(-0,2\right)\)

\(=\left(\frac{9}{25}-4\right):\left(\frac{-1}{5}\right)=\frac{-91}{25}\cdot\frac{-5}{1}=\frac{91}{5}\)

b: \(\left(-\frac15\right)^2+\frac15-2\cdot\left(-\frac12\right)^3-\frac12\)

\(=\frac{1}{25}+\frac15-2\cdot\frac{-1}{8}-\frac12\)

\(=\frac{1}{25}+\frac{5}{25}+\frac14-\frac12=\frac{6}{25}-\frac14=\frac{24}{100}-\frac{25}{100}=-\frac{1}{100}\)

c: \(\left(3-\frac14+\frac23\right)^2:2022^0\)

\(=\left(\frac{36}{12}-\frac{3}{12}+\frac{8}{12}\right)^2=\left(\frac{41}{12}\right)^2=\frac{1681}{144}\)

d: \(2^2\cdot9:\left(3\frac45+0,2\right)\)

\(=4\cdot9:\left(3,8+0,2\right)\)

\(=\frac{36}{4}=9\)

e: \(\left(\frac14+\frac23\right)^2-1\frac13=\left(\frac{3}{12}+\frac{8}{12}\right)^2-\frac43\)

\(=\left(\frac{11}{12}\right)^2-\frac43=\frac{121}{144}-\frac{192}{144}=-\frac{71}{144}\)

f: \(1:\left(-1\frac52+0,5\right)^2\)

\(=1:\left(-\frac72+\frac12\right)^2\)

\(=1:\left(-3\right)^2=\frac19\)

Bài 2:

a: \(-\frac{5}{14}+\frac38-\frac{2}{14}-\frac38+\frac12\)

\(=\left(-\frac{5}{14}-\frac{2}{14}+\frac12\right)+\left(\frac38-\frac38\right)\)

\(=\left(-\frac{7}{14}+\frac{7}{14}\right)+0=0+0=0\)

b: \(\frac{7}{15}-\frac57+\frac{23}{15}+\frac57-\frac35\)

\(=\left(\frac{7}{15}+\frac{23}{15}\right)-\frac35+\left(\frac57-\frac57\right)\)

\(=\frac{30}{15}-\frac35=2-\frac35=\frac75\)

c: \(-\frac25\cdot\frac57+\frac{-2}{5}\cdot\frac97\)

\(=-\frac25\left(\frac57+\frac97\right)=-\frac25\cdot2=-\frac45\)

d: \(\frac{55}{27}+\frac{-21}{5}+\frac{-55}{27}-\frac{-21}{5}\)

\(=\left(\frac{55}{27}-\frac{55}{27}\right)+\left(-\frac{21}{5}+\frac{21}{5}\right)\)

=0+0=0

e: \(\frac57:\left(\frac{15}{8}-\frac14\right)-\frac57:\left(\frac14+\frac12\right)\)

\(=\frac57:\left(\frac{15}{8}-\frac28\right)-\frac57:\left(\frac14+\frac24\right)\)

\(=\frac57:\frac{13}{8}-\frac57:\frac34\)

\(=\frac57\cdot\frac{8}{13}-\frac57\cdot\frac43=\frac57\left(\frac{8}{13}-\frac43\right)=\frac57\cdot\left(\frac{24}{39}-\frac{52}{39}\right)\)

\(=\frac57\cdot\frac{-28}{39}=\frac{5\cdot\left(-4\right)}{39}=-\frac{20}{39}\)

f: \(16\frac27:\left(-\frac35\right)-28\frac27:\left(-\frac35\right)\)

\(=\left(16+\frac27\right)\cdot\frac{-5}{3}-\left(28+\frac27\right)\cdot\frac{-5}{3}\)

\(=-\frac53\left(16+\frac27-28-\frac27\right)=-\frac53\cdot\left(-12\right)=20\)

\(\frac{x}{10}=\frac{y}{5}\)

=>\(\frac{x}{2}=\frac{y}{1}\)

=>\(\frac{x}{4}=\frac{y}{2}\)

\(\frac{y}{2}=\frac{z}{3}\)

nên \(\frac{x}{4}=\frac{y}{2}=\frac{z}{3}\)

mà 2x-3y+4z=350

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{x}{4}=\frac{y}{2}=\frac{z}{3}=\frac{2x-3y+4z}{2\cdot4-3\cdot2+4\cdot3}=\frac{350}{14}=25\)

=>\(\begin{cases}x=25\cdot4=100\\ y=25\cdot2=50\\ z=25\cdot3=75\end{cases}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}=\frac{a+b-c+a+c-b+b+c-a}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

=>\(\begin{cases}a+b-c=c\\ a+c-b=b\\ b+c-a=a\end{cases}\Rightarrow\begin{cases}a+b=2c\\ a+c=2b\\ b+c=2a\end{cases}\)

\(A=\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}=\frac{2a\cdot2b\cdot2c}{abc}=8\)

Bài 8:

Chu vi đáy là:

3,5+3,5+3+6=7+9=16(cm)

Diện tích xung quanh là: \(16\cdot11,5=184\left(\operatorname{cm}^2\right)\)

Bài 9:

Diện tích đáy là:

\(S=\frac12\cdot7\cdot24=12\cdot7=84\left(m^2\right)\)

Thể tích của khối bê tông là:

\(84\cdot22=1848\left(m^3\right)\)

Số tiền phải trả là:

\(1848\cdot2500000=4620000000\) (đồng)

Cách 1: ta có: \(\hat{yAB}+\hat{y^{\prime}AB}=180^0\) (hai góc kề bù)

=>\(\hat{y^{\prime}AB}=180^0-105^0=75^0\)

ta có: \(\hat{y^{\prime}AB}=\hat{x^{\prime}Bz}\left(=75^0\right)\)

mà hai góc này là hai góc ở vị trí đồng vị

nên Ay//Bz

=>yy'//Bz

Cách 2:

Ta có: \(\hat{x^{\prime}Bz}+\hat{xBz}=180^0\) (hai góc kề bù)

=>\(\hat{xBz}=180^0-75^0=105^0\)

Ta có: \(\hat{xBz}=\hat{yAB}\left(=105^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên Ay//Bz

=>yy'//Bz

a:

b: b và c song song với nhau

a: ||\(x:\left(-\frac23\right)+\frac12\) |+\(\frac56\) |\(\cdot\frac12=\frac34\)

=>||\(x:\left(-\frac23\right)+\frac12\) |\(+\frac56\) |\(=\frac34:\frac12=\frac32\)

\(\left|x:\left(-\frac23\right)+\frac12\right|+\frac56\ge\frac56\)

nên \(\left|x:\left(-\frac23\right)+\frac12\right|+\frac56=\frac32\)

=>\(\left|x:\left(-\frac23\right)+\frac12\right|=\frac32-\frac56=\frac96-\frac56=\frac46=\frac23\)

=>\(\left[\begin{array}{l}x:\left(-\frac23\right)+\frac12=\frac23\\ x:\left(-\frac23\right)+\frac12=-\frac23\end{array}\right.\Rightarrow\left[\begin{array}{l}x:\left(-\frac23\right)=\frac23-\frac12=\frac16\\ x:\left(-\frac23\right)=-\frac23-\frac12=-\frac46-\frac36=-\frac76\end{array}\right.\)

=>\(\left[\begin{array}{l}x=\frac16\cdot\left(-\frac23\right)=-\frac{2}{18}=-\frac19\\ x=-\frac76\cdot\left(-\frac23\right)=\frac{14}{18}=\frac79\end{array}\right.\)

a: \(\left|-\frac23x+\frac38\right|\cdot\left(-\frac85\right)=-\frac{8}{15}\)

=>\(\left|\frac23x-\frac38\right|=\frac{8}{15}:\frac85=\frac{5}{15}=\frac13\)

=>\(\left[\begin{array}{l}\frac23x-\frac38=\frac13\\ \frac23x-\frac38=-\frac13\end{array}\right.\Rightarrow\left[\begin{array}{l}\frac23x=\frac38+\frac13=\frac{17}{24}\\ \frac23x=-\frac13+\frac38=\frac{1}{24}\end{array}\right.\)

=>\(\left[\begin{array}{l}x=\frac{17}{24}:\frac23=\frac{17}{24}\cdot\frac32=\frac{17}{16}\\ x=\frac{1}{24}:\frac23=\frac{1}{24}\cdot\frac32=\frac{3}{48}=\frac{1}{16}\end{array}\right.\)

ΔABC đều

=>\(\hat{ABC}=\hat{ACB}=\hat{BAC}=60^0\)

Ta có: \(\hat{xAC}=\hat{ACB}\left(=60^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên Ax//BC

AMNP là hình vuông

=>PN//AM và AP//MN

ABCD là hình vuông

=>AB//CD và BC//AD

PN//AM nên PN//AB

Ta có: PN//AB

AB//CD

Do đó: PN//CD
Ta có: MN//AP

MN⊥AB

Do đó: AP⊥AB

mà AD⊥ AB

và AP và AD có điểm chung là A

nên A,P,D thẳng hàng

Ta có: MN//AP

=>MN//AD

mà AD//BC

nên MN//BC

18 tháng 8