K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2021

Ta có: \(\left(x+y\right)^4=x^4+4x^3y+6x^2y^2+4xy^3+y^4\)

\(\Rightarrow x^4+y^4=\left(x+y\right)^4-\left(4x^3y+4xy^3\right)-6x^2y^2\)

\(=\left(x+y\right)^4-4xy\left(x^2+y^2\right)-6x^2y^2\)

Lại có: \(x^2+2xy+y^2=\left(x+y\right)^2\Leftrightarrow\left(x+y\right)^2=28\Rightarrow\left(x+y\right)^4=784\)

Khi đó: \(x^4+y^4=784-4\cdot5\cdot18-6\cdot5^2=274\)

Vậy \(x^4+y^4=274\)

ta có:

\(\left(x^2+y^2\right)^2=x^4+2\left(xy\right)^2+y^2\)

\(\Leftrightarrow18^2=x^4+y^4+2.15^2\)

\(\Leftrightarrow324=x^4+y^4+450\)

\(\Leftrightarrow x^4+y^4=324-450\)

\(\Leftrightarrow x^4+y^4=-126\)

mình nghĩ phải là x2-y2=18 thì đề bài mới đúng

4 tháng 8 2017

\(\left(x^2+y^2\right)=18\Leftrightarrow\left(x^2+y^2\right)^2=324\Leftrightarrow x^4+2x^2y^2+y^4=324\)

\(\Leftrightarrow x^4+y^4+50=324\Leftrightarrow x^4+y^4=274\)

18 tháng 12 2018

\(x^2+y^2=18\)

\(\Leftrightarrow\left(x^2+y^2\right)^2=18^2\)

\(x^4+2x^2y^2+y^4=18^2\)

tự thay số vào tính nhé ~

18 tháng 12 2018

Ta có : \(\left(x^2+y^2\right)=x^4+2x^2y^2+y^4.\)

\(\Rightarrow18^2=x^4+2\left(xy\right)^2+y^4\)

\(\Rightarrow324=x^4+2.5^2+y^4\)

\(\Rightarrow324=x^4+50+y^4\)

\(\Rightarrow x^4+y^4=274\)

khó quá chj ơi 

8 tháng 8 2017

15) (x4-4)+(2x3-4x)

=(x2-2).(x2+2) +2x.(x2-2)

=(x2-2).(x2+2+2x)

14 tháng 8 2020

a) \(\left(x+y-z\right)^2=\left[\left(x+y\right)-z\right]^2\)

\(=\left(x+y\right)^2-2\left(x+y\right)z+z^2\)

\(=x^2+2xy+y^2-2zx-2yz+z^2\)

\(=x^2+y^2+z^2+2xy-2yz-2zx\)

b) \(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\)

\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)

\(=x^4-y^4\)

c) \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)

\(=x^5+y^5\)

26 tháng 7 2020

Xài trò này chắc Oke :))

a)

Mình nghĩ là \(x^5+y^5\)nhó, nếu đề khác thì comment xuống mình nghĩ cách khác :p

\(49=\left(x+y\right)^2=x^2+y^2+2xy=25+2xy\Rightarrow xy=12\)

\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)\)

\(=\left(x^2+y^2\right)\left(x+y\right)\left(x^2+y^2-xy\right)-x^2y^2\left(x+y\right)\)

\(=25\cdot7\cdot\left(25-12\right)-12^2\cdot7\)

\(=1267\)

b)

\(xy^6+x^6y=xy\left(x^5+y^5\right)=P\left(x^5+y^5\right)\)

Ta tính \(x^5+y^5\) theo S và P

Dễ có:

\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)\)

\(=\left[\left(x+y\right)^2-2xy\right]\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]-S^2P\)

\(=\left(S^2-2P\right)\left(S^3-3SP\right)-S^2P\)

\(=S^5-5S^3P+2SP^2-S^2P\)

Chắc không nhầm lẫn gì ở việc tính toán =)))