Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x3+8y3+x2+4y2-5 => x3+ (2y)3+x2+4(-5)+(2y)2+ 3.5 = x3+ (2y)3+x2+4(-5)+(2y)2+15( 1)
Thay xy = -5 vào 1, ta có:
x3+ (2y)3+x2+4xy+(2y)2+15 = (x+2y)[x2-x2y + (2y)2] + (x+2y)2 + 15 = (x+2y)[x2+2.x.2y +(2y)2-6xy] + (x+2y)2 + 15 = (x+2y)[ (x+2y)2 - 6xy] + 15 (2)
Thay x+2y = -2 và xy=-5 vào 2, ta có:
-2[ (-2)2 - 6.(-5)] + 15 = -2 ( 4 + 30) + 15 = -2. 34 + 15 = -53
Bài làm
a) 4x - 8y
<=> 4( x - 2y )
b) 12x( x - 2y ) - 8y( x - 2y )
<=> ( 12x - 8y )( x - 2y )
<=> 4( 3x - 2y )( x - 2y )
c) 2x + 2y - x2 - xy
= 2( x + y ) - x( x + y )
= ( x + y )( 2 - x )
d) x2 - 4y2
<=> ( x - 2y )( x + 2y )
e) x3 + x2y - 4x - 4y
<=> x2( x + y ) - 4( x + y )
<=> ( x - 2 )( x + 2 )( x + y )
g) 3x2 - 6xy + 3y2 - 12x3
<=>3( x2 - 3xy + y2 - 4x3 )
# Học tốt #
a)4(x-2y)
b)(x-2y)(12x-8y)
=4(x-2y)(3x-2y)
c)2(x+y)-x(x+y)
=(2-x)(x+y)
d)(x-2y)(x+2y)
e)x2(x+y)-4(x+y)
=(x+y)(x2-4)
=(x+y)(x-2)(x+2)
g)3(x2-2xy+y2-4z3)
=3[(x-y)2-4z3]
????????????phải là 4z2chứ nhỉ.....
1. x3 + 8 = (x + 2 )(x2 - x + 1)
2. 27 - 8y3 = ( 3 - 2y ) ( 9 + 6y + 4y2 )
3. y6 + 1 = (y2)3 + 1 = ( y2 + 1) ( y4 - y2 +1 )
4.64x3 - \(\dfrac{1}{8}\)y3 = ( 4x - \(\dfrac{1}{2}\)y ) ( 16x2 + 2xy + \(\dfrac{1}{4}\)y2)
5. 125x6 - 27y9 = (5x2)3 - (3y3)3
= ( 5x2 - 3y3)(25x4 +15x2y3 + 9y6)
1. \(125x^3+y^6=\left(5x\right)^3+\left(y^2\right)^3\)
\(=\left(5x+y^2\right)\left[\left(5x\right)^2-5x.y^2+\left(y^2\right)^2\right]\)
\(=\left(5x+y^2\right)\left(25x^2-5xy^2+y^4\right)\)
2. \(4x\left(x-2y\right)+8y\left(2y-x\right)\)
\(=4x\left(x-2y\right)-8y\left(x-2y\right)\)
\(=\left(x-2y\right)\left(4x-8y\right)\)
3. \(25\left(x-y\right)^2-16\left(x+y\right)^2\)
\(=\left[5\left(x-y\right)\right]^2-\left[4\left(x+y\right)\right]^2\)
\(=\left[5\left(x-y\right)-4\left(x+y\right)\right]\left[5\left(x-y\right)+4\left(x+y\right)\right]\)
\(=\left(5x-5y-4x-4y\right)\left(5x-5y+4x+4y\right)\)
\(=\left(x-9y\right)\left(9x-y\right)\)
4. \(x^4-x^3-x^2+1\)
\(=x^3\left(x-1\right)-\left(x^2-1\right)\)
\(=x^3\left(x-1\right)-\left(x-1\right)\left(x+1\right)\)
\(=\left(x-1\right)\left(x^3-x-1\right)\)
5. \(a^3x-ab+b-x\)
\(=a^3x-x-ab+b\)
\(=x\left(a^3-1\right)-b\left(a-1\right)\)
\(=x\left(a-1\right)\left(a^2+a+1\right)-b\left(a-1\right)\)
\(=\left(a-1\right)\left[x\left(a^2+a+1\right)-b\right]\)
6. \(x^3-64=x^3-4^3\)
\(=\left(x-4\right)\left(x^2+4x+16\right)\)
7. \(0,125\left(a+1\right)^3-1\)
\(=\left[0,5\left(a+1\right)\right]^3-1^3\)
\(=\left[0,5\left(a+1\right)-1\right]\left\{\left[0,5\left(a+1\right)\right]^2+\left[0,5\left(a+1\right).1\right]+1^2\right\}\)
\(=\left[0,5\left(a+1-2\right)\right]\left[0,25a^2+0,5a+0,25+0,5a+0,5+1\right]\)
\(=\left[0,5\left(a-1\right)\right]\left(0,25a^2+a+1,75\right)\)
8. \(9\left(x+5\right)^2-\left(x-7\right)^2\)
\(=\left[3\left(x+5\right)\right]^2-\left(x-7\right)^2\)
\(=\left(3x+15-x+7\right)\left(3x+15+x-7\right)\)
\(=\left(2x+22\right)\left(4x+8\right)\)
9. \(49\left(y-4\right)^2-9\left(y+2\right)^2\)
\(=\left[7\left(y-4\right)\right]^2-\left[3\left(y+2\right)\right]^2\)
\(=\left(7y-28-3y-6\right)\left(7y-28+3y+6\right)\)
\(=\left(4y-34\right)\left(10y-22\right)\)
10. \(x^2y+xy^2-x-y=xy\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(xy-1\right)\)
11. \(x^3+3x^2+3x+1-27z^3\)
\(=\left(x+1\right)^3-\left(3z\right)^3\)
\(=\left(x+1-3z\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)
12. \(x^2-y^2-x+y=\left(x-y\right)\left(x+y\right)-\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-1\right)\)
Cho . Tính giá trị của các biểu thức sau
1. A = x2 + 4y2
= x2 + 4xy + 4y2 - 4xy
= (x + 2y)2 - 4xy
Tại x + 2y = 2; xy = -3 ta có:
A = 22 - 4. (-3) = 4 + 12 = 16
2. B= x3 + 8y3
= (x + 2y)(x2 - 2xy + 4y2)
= (x + 2y)(x2 + 4xy + 4y2 - 6xy)
= (x + 2y)[(x + 2y)2 - 6xy]
Tại x + 2y = 2 ; xy = -3 ta có:
B = 2. 22 - 6. (-3) = 2. 4 + 18 = 144
(x3+8y3) = (x+2y)(x2- 2xy+4y2)
=> (x3+8y3) : (x+2y) = x2-2xy+4y2
\(\left(x^3+8y^3\right):\left(x+2y\right)=\left(x^3+2^3y^3\right):\left(x+2y\right)=\left[x^3+\left(2y\right)^3\right]:\left(x+2y\right)\)
Áp dụng hằng đẳng thức : \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(\left[x^3+\left(2y\right)^3\right]:\left(x+2y\right)=\left[\left(x+2y\right).\left(x^2-2xy+4y^2\right)\right]:\left(x+2y\right)=x^2-2xy+4y^2\)
\(\frac{x^3+8y^3}{x+2y}=\frac{x^3+\left(2y\right)^3}{x+2y}=\frac{\left(x+2y\right)\left(x^2-2xy+4y^2\right)}{x+2y}=x^2-2xy+4y^2\)
Ta có x - 2y = 10
<=> (x - 2y)3 = 1000
<=> x3 - 6x2y + 12xy2 - 8y3 = 1000
<=> x3 - 8y3 - 6xy(x - 2y) = 1000
<=> x3 - 8y3 - 6.(-6).10 = 1000
<=> x3 - 8y3 + 360 = 1000
<=> x3 - 8y3 = 640
Vậy D = 640
`x^3 +8y^3`
`=(x+2y)(x^2 -2xy+4y^2)`
`=10*(x^2 +4xy+4y^2 -6xy)`
`=10*[(x+2y)^2 -6xy)`
`=10*(10^2 -6*(-6))`
`=10*(100+36)`
`=10*136`
`=1360`