K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2017

Theo định lý Py-ta-go ta có B C 2 = A B 2 + A C 2 ⇔ B C 2 = 25 ⇔ B C = 5

Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ta có:

A B 2 = B H . B C ⇒ B H = A B 2 B C hay x = 1,8

=> CH = BC – BH = 5 – 1,8 = 3,2 hay y = 3,2

Vậy x = 1,8; y = 3,2

Đáp án cần chọn là: B

a) Ta có: \(\left\{{}\begin{matrix}3x+y=3\\2x-y=7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x=10\\2x-y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2x-7=2\cdot2-7=-3\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là (x,y)=(2;-3)

b) Ta có: \(7x^2-2x+3=0\)

a=7; b=-2; c=3

\(\Delta=\left(-2\right)^2-4\cdot7\cdot3=4-84=-80< 0\)

Suy ra: Phương trình vô nghiệm

Vậy: \(S=\varnothing\)

3 tháng 6 2021

a) (d) đi qua điểm \(\left(1;8\right)\Rightarrow8=2m+2-4m=2-2m\Rightarrow m=-3\)

b) pt hoành độ giao điểm: \(x^2-2\left(m+1\right)x+4m=0\)

\(\Delta'=\left(m+1\right)^2-4m=m^2-2m+1=\left(m-1\right)^2\)

Để (P) cắt (d) tại 2 điểm phân biệt \(\Rightarrow\Delta'>0\Rightarrow m\ne1\)

Chọn B

10 tháng 3 2022

B

NV
22 tháng 12 2022

\(y=\dfrac{1}{2}\left(x^2-1\right)\) không phải hàm số bậc nhất

Bài 2: 

b) Phương trình hoành độ giao điểm của (P) và (d) là:

\(2x^2=-x+3\)

\(\Leftrightarrow2x^2+x-3=0\)

\(\Leftrightarrow2x^2-2x+3x-3=0\)

\(\Leftrightarrow2x\left(x-1\right)+3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{3}{2}\end{matrix}\right.\)

Thay x=1 vào hàm số \(y=2x^2\), ta được:

\(y=2\cdot1^2=2\)

Thay \(x=-\dfrac{3}{2}\) vào hàm số \(y=2x^2\), ta được:

\(y=2\cdot\left(-\dfrac{3}{2}\right)^2=2\cdot\dfrac{9}{4}=\dfrac{9}{2}\)

Vậy: Tọa độ giao điểm của (p) và (D) là (1;2) và \(\left(-\dfrac{3}{2};\dfrac{9}{2}\right)\)

AH
Akai Haruma
Giáo viên
7 tháng 10 2023

Lời giải:
a. Hệ số 2>0 nên hàm đồng biến 

b. Hệ số $1-\sqrt{2}<0$ nên hàm nghịch biến 

c. Hệ số $-5<0$ nên hàm nghịch biến 

d. Hệ số $1+m^2>0$ với mọi $m\in\mathbb{R}$ nên hàm đồng biến

e. Hệ số $\sqrt{3}-1>0$ nên hàm đồng biến 

f. Hệ số $2+m^2>0$ với mọi $m\in\mathbb{R}$ nên hàm đồng biến.