K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a,Để \(\sqrt{x^2-8x-9}\) có nghĩ thì

 \(x^2-8x-9\ge0\)

\(\Leftrightarrow x^2+x-9x-9\ge0\)

\(\Leftrightarrow x\left(x+1\right)-9\left(x+1\right)\ge0\)

\(\Leftrightarrow\left(x+1\right)\left(x-9\right)\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1\ge0\\x-9\ge0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x\ge-1\\x\ge9\end{cases}\Rightarrow}x\ge9\)

\(or\orbr{\begin{cases}x+1\le0\\x-9\le0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x\le-1\\x\le9\end{cases}\Rightarrow}x\le-1\)

\(Để\sqrt{4-9x^2}\text{có nghĩa}\)

\(\Rightarrow4-9x^2\ge0\)

\(\Leftrightarrow\left(2-3x\right)\left(2+3x\right)\ge0\)

\(\Leftrightarrow-\frac{2}{3}\le x\le\frac{2}{3}\)

NV
18 tháng 6 2019

a/ \(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}\) xác định với mọi x

b/ \(\left\{{}\begin{matrix}x+3\ge0\\x+9\ge0\end{matrix}\right.\) \(\Rightarrow x\ge-3\)

c/ \(\left\{{}\begin{matrix}\frac{x-1}{x+2}\ge0\\x+2\ne0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le-2\end{matrix}\right.\)

d/ \(\left\{{}\begin{matrix}x-2\ge0\\x-5\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge2\\x\ne5\end{matrix}\right.\)

12 tháng 6 2019

a) \(\sqrt{x+3}+\sqrt{x^2+9}\)

Ta thấy \(x^2\ge0\Rightarrow x^2+9\ge9\Rightarrow\sqrt{x^2+9}\ge3\)(luôn xác định)

Vậy để biểu thức xác định thì \(\sqrt{x+3}\)phải xác định

\(\Rightarrow x+3\ge0\Leftrightarrow x\ge-3\)

Vậy \(ĐKXĐ:x\ge-3\)

12 tháng 6 2019

b) \(\sqrt{\frac{x-1}{x+2}}\)

Để biểu thức trên xác định thì x - 1 và x + 2 cùng dấu

\(TH1:\hept{\begin{cases}x-1>0\\x+2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x>-2\end{cases}}\Rightarrow x>1\)

\(TH1:\hept{\begin{cases}x-1< 0\\x+2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\x< -2\end{cases}}\Rightarrow x< -2\)

Vậy \(ĐKXĐ:x>1;x< -2\)

6 tháng 6 2019

\(b,\)\(\sqrt{\frac{2}{x^2}}\)

Căn thức xác định \(\Leftrightarrow\frac{2}{x^2}\)thỏa mãn đkxđ

\(\Rightarrow x^2\ne0\)

\(\Rightarrow x\ne0\)

6 tháng 6 2019

a) \(\sqrt{\frac{-5}{x^2+6}}\)

Để biểu thức có nghĩa thì \(x^2+6< 0\)

Mà \(x^2\ge0\Rightarrow x^2+6\ge6\)(mâu thuẫn)

Vậy biểu thức này không xác định