Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(5^{2222}=\left(5^2\right)^{1111}=25^{1111}\)
\(2^{5555}=\left(2^5\right)^{1111}=32^{1111}\)
=> tự kết luận
b)
ĐỀ ?????
a) \(5^{2222}=5^{2.1111}=25^{1111}\)
\(2^{5555}=2^{5.1111}=32^{1111}\)
Do \(25^{1111}< 32^{1111}\)nên \(5^{2222}< 2^{5555}\)
b) \(4a=3b\)=> \(\frac{a}{3}=\frac{b}{4}\)
Áp dụng t.c dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{a+b}{3+4}=\frac{21}{7}=3\)
suy ra: \(\frac{a}{3}=3\)=> \(a=9\)
\(\frac{b}{4}=3\)=> \(b=21\)
Vậy....
\(a,\left[2^{17}+16^2\right]\cdot\left[9^{15}-3^{15}\right]\cdot\left[2^4-4^2\right]\)
\(=\left[2^{17}+16^2\right]\cdot\left[9^{15}-3^{15}\right]\cdot\left[16-16\right]\)
\(=\left[2^{17}+16^2\right]\left[9^{15}-3^{15}\right]\cdot0=0\)
\(b,\left[8^{2017}-8^{2015}\right]\cdot\left[8^{2014}\cdot8\right]\)
\(=8^{2015}\left[8^2-1\right]\cdot8^{2015}\)
\(=8^{2015}\cdot63\cdot8^{2015}=8^{4030}\cdot63\)sửa lại câu b , có vấn đề rồi
\(c,\frac{2^8+8^3}{2^5\cdot2^3}=\frac{2^8+\left[2^3\right]^3}{2^5\cdot2^3}=\frac{2^8+2^9}{2^8}=\frac{2^8\left[1+2\right]}{2^8}=3\)
2.a, \(2^6=\left[2^3\right]^2=8^2\)
Mà 8 = 8 nên 82 = 82 hay 26 = 82
b, \(5^3=5\cdot5\cdot5=125\)
\(3^5=3\cdot3\cdot3\cdot3\cdot3=243\)
Mà 125 < 243 nên 53 < 35
c, 26 = [23 ]2 = 82
Mà 8 > 6 nên 82 > 62 hay 26 > 62
d, 7200 = [72 ]100 = 49100
6300 = \(\left[6^3\right]^{100}\)= 216100
Mà 49 < 216 nên 49100 < 216100 hay 7200 < 6300
bài 2
làm câu B;C nha
B)
\(27^3=\left(3^3\right)^3=3^9\)
\(9^5=\left(3^2\right)^5=3^{10}\)
vì \(10>9\)
\(=>9^5>27^3\)
C)
\(\left(\frac{1}{8}\right)^6=\left(\frac{1}{2^3}\right)^6=\frac{1^6}{2^{18}}=\frac{1}{2^{18}}\)
\(\left(\frac{1}{32}\right)^4=\left(\frac{1}{2^5}\right)^4=\frac{1^4}{2^{20}}=\frac{1}{2^{20}}\)
vì \(2^{18}< 2^{20}\)
\(=>\frac{1}{2^{18}}>\frac{1}{2^{20}}\)
\(=>\left(\frac{1}{8}\right)^6>\left(\frac{1}{32}\right)^4\)
\(\text{A.}\frac{32^3.9^5}{8^3.6^6}=\frac{\left(2^5\right)^3.\left(3^2\right)^5}{\left(2^3\right)^3.\left(2.3\right)^6}=\frac{2^{15}.3^{10}}{2^9.2^6.3^6}=\frac{3^{10}}{3^6}=3^4=81\)
\(\text{B.}\frac{\left(5^5-5^4\right)^3}{50^6}=\frac{2500^3}{50^6}=\frac{\left(50^2\right)^3}{50^6}=\frac{50^6}{50^6}=1\)
Bài 2:
\(\text{A.Ta có:}\)
\(5^6=\left(5^3\right)^2=125^2\)
\(\left(-2\right)^{14}=2^{14}=\left(2^7\right)^2=128^2\)
Vì \(125< 128\)
\(\Rightarrow125^2< 128^2\)
\(\Rightarrow5^6< \left(-2\right)^{14}\)
\(\text{B.Ta có:}\)
\(9^5=\left(3^2\right)^5=3^{10}\)
\(27^3=\left(3^3\right)^3=3^9\)
Vì \(9< 10\)
\(\Rightarrow3^9< 3^{10}\)
\(\Rightarrow27^3< 9^5\)
\(\text{C.Ta có:}\)
\(\left(\frac{1}{8}\right)^6=\left[\left(\frac{1}{2}\right)^3\right]^6=\left(\frac{1}{2}\right)^{18}\)
\(\left(\frac{1}{32}\right)^4=\left[\left(\frac{1}{2}\right)^5\right]^4=\left(\frac{1}{2}\right)^{20}\)
Vì \(18< 20\)
\(\Rightarrow\left(\frac{1}{2}\right)^{18}< \left(\frac{1}{2}\right)^{20}\)
\(\Rightarrow\left(\frac{1}{8}\right)^6< \left(\frac{1}{32}\right)^4\)
32222 = (32)1111 = 91111 > 81111 = (23)1111 = 23333
Vậy 32222 > 23333
3^2222 = (3^2)^1111 =9^1111
2^3333 = (2^3)^1111 =8^1111
Vì 9^1111>8^1111
suy ra 3^2222>2^3333
k nha mấy bạn :)
nếu có sai nhờ mấy bạn sửa dùm thanks
Ta có: \(\left(2^2\right)^3=2^{2.3}=2^6\)
Vậy \(\left(2^2\right)^3=2^6\)
a) 2711 và 848
2711 > 848
b) 6255 và 1257
6255 > 1257
c) 525 và 6*522
525 > 6*522
đ) 7*213 và 216
7*213 < 216