Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{-2}{3}\right)^3=\frac{-8}{27}\)
\(\frac{\left(-2\right)^3}{3^3}=\frac{-8}{27}\)
\(=>\left(-\frac{2}{3}\right)^3=\frac{\left(-2\right)^3}{3^3}\)
Áp dụng câu trên ta được :
\(\frac{10^5}{2^5}=\left(\frac{10}{2}\right)^5\)
Ủng hộ nha
a)
\(\left(-\frac{2}{3}\right)^3=\frac{\left(-2\right)^3}{3^3}\)
mà \(\frac{\left(-2\right)^3}{3^3}\) là vế phải
\(\Rightarrow\) \(\left(-\frac{2}{3}\right)^3=\frac{\left(-2\right)^3}{3^3}\)
b)
\(\frac{10^5}{2^5}=\left(\frac{10}{2}\right)^5\)
mà \(\left(\frac{10}{2}\right)^5\) là vế phải
Nên \(\frac{10^5}{2^5}=\left(\frac{10}{2}\right)^5\)
a) \(\left(-\frac{2}{3}\right)^3=\left(-\frac{2}{3}\right).\left(-\frac{2}{3}\right).\left(-\frac{2}{3}\right)=\frac{\left(-2\right).\left(-2\right).\left(-2\right)}{3.3.3}=\frac{\left(-2\right)^3}{3^3}=\frac{-8}{27}\)
b) \(\left(\frac{10}{2}\right)^5=\frac{10}{2}.\frac{10}{2}.\frac{10}{2}.\frac{10}{2}.\frac{10}{2}=\frac{10.10.10.10.10}{2.2.2.2.2}=\frac{10^5}{2^5}=\frac{100000}{32}=3125\)
c) Đặt \(A=2^0+2^1+2^2+...+2^{50}\)
\(\Leftrightarrow2A=2^1+2^2+2^3...+2^{51}\)
\(\Leftrightarrow2A-A=2^1+2^2+2^3...+2^{51}\)\(-2^0-2^1-2^2-...-2^{50}\)
\(\Leftrightarrow A=2^{51}-2^0=2^{51}-1< 2^{51}\)
Vậy \(2^0+2^1+2^2+...+2^{50}< 2^{51}\)
a)Ta có: \(\hept{\begin{cases}2^{30}=\left(2^3\right)^{10}=8^{10}\\3^{30}=\left(3^3\right)^{10}=27^{10}\\4^{30}=\left(2^2\right)^{30}=2^{60}\end{cases}}\)và \(\hept{\begin{cases}3^{20}=\left(3^2\right)^{10}=9^{10}\\6^{20}=\left(6^2\right)^{10}=36^{10}\\8^{20}=\left(2^3\right)^{20}=2^{60}\end{cases}}\)
Mà \(8^{10}< 9^{10}\); \(27^{10}< 36^{10}\);\(2^{60}=2^{60}\)nên
\(8^{10}+27^{10}+2^{60}< 9^{10}+36^{10}+2^{60}\)
hay \(2^{30}+3^{30}+4^{30}< 3^{20}+6^{20}+8^{20}\)
\(\text{a, }2^{30}=8^{10}\)
\(\text{ }3^{20}=\left(3^2\right)^{10}=9^{10}\)
\(\text{Vậy }2^{30}< 3^{20}\)
\(\text{b, }5^{300}=\left(5^3\right)^{100}=125^{100}\)
\(3^{500}=\left(3^5\right)^{100}=243^{100}\)
\(\text{Vậy }5^{300}< 243^{100}\)
\(S=1+5+5^2+5^4+...+5^{200}\)
\(\Leftrightarrow5^2S=5^2+5^4+...+5^{202}\)
\(\Leftrightarrow25S=5^2+5^4+...+5^{202}\)
\(\Leftrightarrow25S-S=5^{202}-1\)
\(\Leftrightarrow S=\left(5^{202}-1\right)\div24\)
a) S = 1 + 52 + 54 + ... + 5200
=> 52S = 52.(1 + 52 + 54 + ... + 5200)
=> 25S = 52 + 54 + 56 + ... + 5202
=> 25S - S = (52 + 54 + 56 + ... + 5202) - (1 + 52 + 54 + ... + 5200)
=> 24S = 5202 - 1
=> S = \(\frac{5^{202}-1}{24}\)